• Title/Summary/Keyword: Harmonic generation

Search Result 437, Processing Time 0.024 seconds

Harmonic Generation and System Response Characteristics in Electrified Railway(II) - Focused on Measurement and Analysis - (전기철도에서의 고조파 발생과 계통응답특성(II) - 고조파 측정분석을 중심으로 -)

  • 오광해;이한민
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.1
    • /
    • pp.65-69
    • /
    • 2004
  • In reference to this study, Part Ⅰ showed how the system respond to the harmonics originated from electric locomotives. That is, the system response to the harmonics was derived by computational algorithm with numerical formulas in theoretical aspects. However, Real catenary system has complex configuration of conductors and it is an important point that if we can consider the circuit element of catenary conductors as an uniformly distributed RLC element. Moreover, harmonic characteristics in electric locomotive depend on its operational modes. From these point of view, measurements of harmonics are performed for real railway power supply systems under the various operational modes, and spectrum and distortion analyses in measurement data are described.

A Hybrid Anti-islanding Detection Scheme for Utility Interactive Inverter with Enhanced Harmonic Extraction Capability (향상된 고조파 검출 능력을 갖는 계통연계 인버터의 하이브리드 단독운전 방지기법)

  • Kang, Sung-Wook;Kim, Kyeong-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.312-319
    • /
    • 2014
  • When distributed generation such as a wind power system is connected to the grid, it should meet grid requirements like IEEE Std. 1547, which regulates the anti-islanding method. Since the islanding may cause damage on electrical equipments or safety hazards for utility line worker, a distributed generation should detect it as soon as possible. This paper proposes a hybrid anti-islanding method coupled with the active and passive detection methods. To enhance the harmonic extraction capability for an active harmonic injection method, cascaded second-order band-pass filter and signal processing scheme are employed. Simulation and experiments are carried out under the islanding test condition specified in IEEE Std. 1547. Passive over/under voltage and over/under frequency methods are combined with the active method to improve the detection speed under certain condition. The simulation and experimental results are presented to verify that the proposed hybrid anti-islanding method can effectively detect the islanding.

Harmonic Current Compensation Method Using Inverter-Interfaced Distributed Generators (인버터 연계형 분산전원을 이용한 배전계통 고조파 전류 보상원리)

  • Chung, Il-Yop;Kang, Hyun-Koo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.279-284
    • /
    • 2011
  • Harmonic distortions in current waveform may cause significant problems in electric power system facility and operation. This paper presents an adaptive parameter estimation method to detect harmonic current components caused by nonlinear loads. In addition, a coordination strategy for multiple inverter-interfaced distributed generators to compensate the harmonic currents is discussed. The coordination strategy is realized by distributing the harmonic compensation participation index to individual distributed generators. The harmonic compensation participation index can be determined by the amount of remaining power generation capacity of each distributed generator. Simulation results based on switching-level inverter models show that the proposed harmonic detection method has good performance and the coordination strategy can improve harmonic problems efficiently.

Design and Development of Harmonic Power Source Control Module (고조파 전원발생장치의 제어기 설계 및 개발)

  • Lee, S.I.;Yoo, J.G.;Jeon, J.C.;Jeon, H.J.;Heo, H.S.;Choe, G.H.
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.40-42
    • /
    • 2007
  • Recently the harmonic generation has deteriorated the quality of electricity and affected the performance on the electrical installation including personal computer, fax, community devices and so on. Some studies of harmonic affects in diagnosis and the cause of accident has not done by the experimental data of harmonic source but merely by presumption according to qualitative analysis. So, in order to research the harmonic affect on the electrical installation according to quantitative analysis and gather reliable data over and over again, it is necessary to develop an Harmonic power source which is capable of generating some harmonics. In this paper, we described about realization of Harmonic power source control module which can produce and added harmonics for the analysis due to harmonic effects.

  • PDF

DIRECT PROBING OF CARRIER MOTION IN ORGANIC FIELD EFFECT TRANSISTOR BY OPTICAL SECOND HARMONIC GENERATION

  • Iwamoto, Mitsumasa;Manaka, Takaaki;Lim, Eun-Ju
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1561-1563
    • /
    • 2008
  • We report an optical second harmonic generation measurement that allows direct probing of dynamical carrier motion in organic field effect transistors. Carrier injection and transport process are discriminated. The mobility and contact resistance of pentacene FETs are determined from the visualized diffusion-like carrier motion.

  • PDF

Characteristics of multi-stage dye laser amplification and Second Harmonic Generation (색소레이저의 다단 증폭 및 SHG 특성)

  • 이영우
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.4
    • /
    • pp.946-949
    • /
    • 2004
  • We obtained ultra-short single pulse with an energy of 80 uJ from Distributed feedback Dye laser. Using three stages of amplifiers constructed by two stages of dye amplifiers and one bethune cell amplifier, we obtained high power pulse and second harmonic generation with BBO in ultraviolet region.

Second Harmonic Generation of Low Power Laser Diode Using a Ring Enhancement Cavity (고리형 Enhancement Cavity 를 이용한 저출력 반도체 레이저의 제2조화파 발생)

  • 오차환
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.2
    • /
    • pp.206-211
    • /
    • 1993
  • We carried out the second harmonic generation of low power CW laser diode with maximum power of 30 mW in $LilO_3$ crystals. We used a ring enhancement cavity to increase the second harmonic conversion efficiency. The ring enhancement cavity was Composed of two flat mirrors and two concave mirrors. The focal length of concave mirrors was 25 mm, and 5 mm long and 10 mm long $LilO_3$ crystals were used. We measured the second harmonic power according to the pumping power and compared with theoretical value. We obtained 397 nm second harmonic power of about $6.6{\mu}W$ in 10 mm long $LilO_3$ crystal with the fundumental 794 nm pumping power of 28 mW.

  • PDF

Multi-Function Distributed Generation with Active Power Filter and Reactive Power Compensator

  • Huang, Shengli;Luo, Jianguo
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1855-1865
    • /
    • 2018
  • This paper presents a control strategy for voltage-controlled multi-function distributed generation (DG) combined with an active power filter (APF) and a reactive power compensator. The control strategy is based on droop control. As a result of local nonlinear loads, the voltages of the point of common coupling (PCC) and the currents injecting into the grid by the DG are distorted. The power quality of the PCC voltage can be enhanced by using PCC harmonic compensation. In addition, with the PCC harmonic compensation, the DG offers a low-impedance path for harmonic currents. Therefore, the DG absorbs most of the harmonic currents generated by local loads, and the total harmonic distortion (THD) of the grid connected current is dramatically reduced. Furthermore, by regulating the reactive power of the DG, the magnitude of the PCC voltage can be maintained at its nominal value. The performance of the DG with the proposed control strategy is analyzed by bode diagrams. Finally, simulation and experimental results verify the proposed control strategy.