• Title/Summary/Keyword: Harmonic current source

Search Result 284, Processing Time 0.028 seconds

A Study on LLCL Filter to Reduce Harmonic Current of Grid Connected Power Inverter (계통연계형 인버터의 고조파 전류저감을 위한 LLCL 필터에 관한 연구)

  • An, Byoung-Woong;Hong, Chang-Pyo;Kim, Hag-Wone;Cho, Kwan-Yuhl;Lim, Byung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.64-70
    • /
    • 2014
  • In this paper, the new LLCL filter is proposed for grid connected three-phase PWM inverter for passive damping. LLCL filter inserts a small inductor in the branch of the capacitor of the traditional LCL filter to compose a series resonant circuit to reduce the switching-frequency component on grid current. Using LLCL filter, the switching-frequency current ripple components can be attenuated much better than the LCL filter, leading to a decrease in the total inductance. However, the resonance phenomena caused by zero impedance from the addition of LC branch in LLCL filter can be a big problem. Resonance phenomena of LLCL filter can be a source of grid system instability, so proper damping methods are required. However, it is difficult to apply a passive damping method in the conventional LLCL filter, because the damping resistor increase impedance of the LC branch. Therefore, switching frequency component of grid current can not much attenuated by low Q of LC series resonance effect. In this paper, a new LLCL filter is proposed to overcome the conventional LLCL filter with passive damping. The validity of the proposed method is proven by simulation and experimental result.

A characteristics study on the Second-harmonic generation conversion efficiency of Pulsed Nd:YAG Laser adopted Superposition multiple Mesh Networks (중첩다단 메쉬회로를 적용한 펄스형 Nd:YAG 레이저의 2차 고조파 변환효율에 관한 특성연구)

  • 김휘영
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.4
    • /
    • pp.565-572
    • /
    • 2001
  • At the most recent years, laser medical instruments, laser applications and laser nuclear fusion need strong visible light and ultraviolet rays. Nonlinear optical devices, such as harmonic generators and parametric oscillators, provide a means of extending the frequency range of available laser sources. Frequency conversion is a useful technique for extending the utility of high-power lasers. It utilizes the nonlinear optical response of an optical medium in intense radiation fields to generate new frequencies. These progresses have been used to generate high-power radiation in all spectral regions, from the ultraviolet to the far infrared. Optical parametric oscillators and amplifiers generate two waves of lower frequency They are capable of generating a range of wavelengths from a single frequency source, in some cases spanning the entire visible and near infrared regions. Consequently, in order to obtain the green light, the pulsed Nd:YAG laser using multiple-mesh PFN(Pulsed Forming Network) method with Nonlinear optical device was adopted. We compared the current pulseshapes with the laser output energy, and conversion efficiency.

  • PDF

Selective Harmonic Elimination in Multi-level Inverters with Series-Connected Transformers with Equal Power Ratings

  • Moussa, Mona Fouad;Dessouky, Yasser Gaber
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.464-472
    • /
    • 2016
  • This study applies the selective harmonic elimination (SHE) technique to design and operate a regulated AC/DC/AC power supply suitable for maritime military applications and underground trains. The input is a single 50/60 Hz AC voltage, and the output is a 400 Hz regulated voltage. The switching angles for a multi-level inverter and transformer turns ratio are determined to operate with special connected transformers with equal power ratings and produce an almost sinusoidal current. As a result of its capability of directly controlling harmonics, the SHE technique is applicable to apparatus with congenital immunity to specific harmonics, such as series-connected transformers, which are specially designed to equally share the total load power. In the present work, a single-phase 50/60 Hz input source is rectified via a semi-controlled bridge rectifier to control DC voltage levels and thereby regulate the output load voltage at a constant level. The DC-rectified voltage then supplies six single-phase quazi-square H-bridge inverters, each of which supplies the primary of a single-phase transformer. The secondaries of the six transformers are connected in series. Through off-line calculation, the switching angles of the six inverters and the turns ratios of the six transformers are designed to ensure equal power distribution for the transformers. The SHE technique is also employed to eliminate the higher-order harmonics of the output voltage. A digital implementation is carried out to determine the switching angles. Theoretical results are demonstrated, and a scaled-down experimental 600 VA prototype is built to verify the validity of the proposed system.

Design of 20 W Class-E Amplifier Including Protection for Wireless Power Transmission at ISM 13.56 MHz (보호 회로를 포함한 무선 전력 전송용 ISM 13.56 MHz 20 W Class-E 앰프 설계)

  • Nam, Min-Young;Kim, Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.6
    • /
    • pp.613-622
    • /
    • 2013
  • In this paper, an inductive clamping class-E power amplifier has been tested for wireless power transmission at ISM band, 13.56 MHz. The implemented power amplifier is designed to operate stably without destroying power transistor in wireless power transmission system which basically keeps not to align between a transmitting antenna and a receiving antenna. The power amplifier is also designed to enhance harmonic filtering characteristic. The amplifier was tested with a DC supply voltage of 28 V and input power of 25 dBm at 13.56 MHz. The test results show the output power level of 43 dBm, the difference power level between fundamental frequency and second harmonic frequency of more than 55 dBc, the dc current consumption of 830 mA, and the high power-added efficiency of 85 %. Finally, the implemented power amplifier operated normally with 830 mA DC current consumption from 28 V source when the two antennas were aligned, and the power transmission was successful. But when the two antennas were not aligned, its DC current consumption automatically decreased down to 420 mA to protect the switching transistor.

A Study on DC Changing Algorithm of the Line-Interactive UPS with Dual Converter Structure (2중 컨버터 구조를 갖는 계통 연계형 UPS의 DC 충전 알고리듬에 관한 연구)

  • Lee, Woo-Cheol;Yoo, Dong-Sang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.3
    • /
    • pp.27-34
    • /
    • 2005
  • This paper presents a three phase Line-Interactive uninterruptible power supply(UPS) system with dual converter structure. The three phase UPS system consists of two active power compensator topologies. One is a series active compensator, which works as a voltage source in phase with the source voltage to have the sinusoidal source current and high power factor under the deviation and distortion of the source voltage. The other is a parallel active compensator, which works as a conventional sinusoidal voltage source in phase with the source voltage, providing to the load a regulated and sinusoidal voltage with low total harmonic distortion(THD). This paper presents in the series and parallel active compensator charging method depending on the amplitude of the source voltage. The conventional Line-Interactive UPS system is responsible for the DC charging and output voltage regulation at the same time, but UPS system with dual converter structure, a series active compensator can also charge the DC link. Therefore the charging algorithm using the series and parallel compensator needs to be researched. Therefore, by making the DC link voltage stable it can contribute the stability of series and parallel compensator. The simulation and experimental result are depicted in this paper to show the effect of the proposed algorithm.

Wind Energy Interface to Grid with Load Compensation by Diode Clamped Multilevel Inverters

  • Samuel, Paulson;Naik, M. Kishore;Gupta, Rajesh;Chandra, Dinesh
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.271-281
    • /
    • 2014
  • Fluctuating wind conditions necessitate the use of a variable speed wind turbine (VSWT) with a AC/DC/AC converter scheme in order to harvest the maximum power from the wind and to decouple the synchronous generator voltage and frequency from the grid voltage and frequency. In this paper, a combination of a three phase diode bridge rectifier (DBR) and a modified topology of the diode clamped multilevel inverter (DCMLI) has been considered as an AC/DC/AC converter. A control strategy has been proposed for the DCMLI to achieve the objective of grid interface of a wind power system together with local load compensation. A novel fixed frequency current control method is proposed for the DCMLI based on the level shifted multi carrier PWM for achieving the required control objectives with equal and uniform switching frequency operation for better control and thermal management with the modified DCMLI. The condition of the controller gain is derived to ensure the operation of the DCMLI at the fixed frequency of the carrier. The converter current injected into the distribution grid is controlled in accordance with the wind power availability. In addition, load compensation is performed as an added facility in order to free the source currents being fed from the grid of harmonic distortion, unbalance and a low power factor even though the load may be unbalanced, non-linear and of a poor power factor. The results are validated using PSCAD/EMTDC simulation studies.

Comparison of Starting Current Characteristics for Three-Phase Induction Motor Due to Phase-control Soft Starter and Asynchronous PWM AC Chopper

  • Thanyaphirak, Veera;Kinnares, Vijit;Kunakorn, Anantawat
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1090-1100
    • /
    • 2017
  • This paper presents the comparison of starting current characteristics of a three-phase induction motor fed by two types of soft starters. The first soft starter under investigation is a conventional AC voltage controller on the basis of a phase-control technique. The other is the proposed asynchronous PWM AC chopper which is developed from the conventional synchronous PWM AC chopper. In this paper, the proposed asynchronous PWM AC chopper control scheme is developed by generating only two asynchronous PWM signals for a three-phase main power circuit (6 switching devices) from a single voltage control signal which is compared with a single sawtooth carrier signal. By this approach, the PWM signals are independent and easy to implement since the PWM signals do not need to be synchronized with a three-phase voltage source. Details of both soft starters are discussed. The experimental and simulation results of the starting currents are shown. It is found that the asynchronous PWM AC chopper efficiently works as a suitable soft starter for the three-phase induction motor due to that the starting currents are reduced and are sinusoidal with less harmonic contents, when being compared with the starting current waveforms using the conventional phase-control starting technique. Also the proposed soft starter offers low starting electromagnetic torque pulsation.

Line-Interactive DVR Using Multi-Level H-Bridge Inverter (멀티-레벨 H-Bridge 인버터를 이용한 Line-Interactive DVR)

  • Kang Dae-Wook;Woo Sung-Min;Kim Tae-Jin;Choi Chang-Ho;Hyun Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.139-143
    • /
    • 2001
  • Recently, the interest on power quality has been hot issue. The equipments cause voltage disturbance and has become more sensitive to the voltage disturbance. This paper deals with 5-Level H-Bridge Line-Inter active Dynamic Voltage Restorer(LIDVR) system. The LIDVR has following advantages in comparison with the DVR with series injection transformer It has the power factor near to unity under normal source voltage, can compensate the harmonic current of the load and the instant interruption, and has the fast response. First, the construction, the operation mode and algebraic modeling of LIDVR are reviewed. And then a voltage controller is proposed to get sinusoidal load voltage with constant amplitude. To find PWM method suitable for H-Bridge converter, two PWM methods are compared and analyzed. Finally, simulation results verify the proposed 5-level H-Bridge LIDVR system.

  • PDF

A Voltage Control Technique of Line-Interactive DVR Using 7-Level H-Bridge Inverter (7-레벨 H-Bridge 인버터를 이용한 Line-Interactive DVR의 전압제어)

  • Kang, Dae-Wook;Hyun, Dong-Seok;Lee, Woo-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.4
    • /
    • pp.705-715
    • /
    • 2007
  • Recently, the interest on power quality has been hot issue because the equipments cause voltage disturbance and have become more sensitive to the voltage disturbance. Additionally, the reseach on power electronic equipments applying to the high power has been increased. This paper deals with Line-Interactive Dynamic Voltage Restorer(LIDVR) system using 7-Level H-Bridge inverter, which is one of the solutions to compensate the voltage disturbance and to increase the power of equipments. The LIDVR has the following advantages comparing to the DVR with the series injection transformer. It has the power factor near to unity under the condition of normal source voltage, can compensate the harmonic current of the load and the instant interruption, and has the fast response. First, the construction, the operation mode and algebraic modeling of LIDVR are reviewed. And then the voltage control algorithm is proposed to get the sinusoidal load voltage with constant amplitude. Finally, simulation and experiment results verify the proposed LIDVR system.

New Control Scheme for LIDVR Considering Asymmetry Input Voltage Conditions (비대칭 입력 전압 상태를 고려한 LIDVR의 새로운 제어방법)

  • Han Chul-Woo;Kim Tae-Jin;Kang Dae-wook;Hyun Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.510-514
    • /
    • 2002
  • Power Quality and reliability are becoming important issues for critical and sensitive loads. The recent growth in the use of impactive and nonlinear loads has caused many power quality problems such as voltage flicks, harmonics and unbalances, which may cause the modem automatic devices to fail, misoperate, or shut down. This paper deals with 7-Level H-Bridge Line-Interactive Dynamic Voltage Restorer (LIDVR) system. It has the power factor near to unity under normal source voltage, can compensate the harmonic current of the load and instant interruption, and has the fast response. Currently, most of the DVR design studies are based on the assumption of the balanced three-phase system. But, actually line fault occurred $1{\phi}\;{sag}\;or\;2{\phi}$ sag. Hence, proposed new control scheme compensate asymmetry input voltage. Finally, simulation results verify the proposed 7-Level H-Bridge LIDVR system.

  • PDF