• Title/Summary/Keyword: Harmonic current

Search Result 1,337, Processing Time 0.028 seconds

Harmonic Generation and System Response Characteristics in Electrified Railway(I) - Focused on System Response Characteristics - (전기철도에서의 고조파 발생과 계통응답특성(I) - 계통응답특성을 중심으로 -)

  • Oh Kwang-Hae;Lee Chang-Mu
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.493-498
    • /
    • 2003
  • Harmonic current originating from electric locomotives can be magnified due to the impedance characteristics of power supply circuit and bring about various problems. That is, electromagnetic interference with communication lines, operational trouble in signaling, overheat and/or vibration in power capacitor, mis-operation in protection relay and so on. Therefore, the exact assessment of the harmonic current flow must be undertaken at design and planning stage for the electric traction systems. For these reasons, this study propose a new approach to model and to analyse traction power feeding system focused on system response to current and voltage harmonic(PART I ). Measurements of harmonics are also performed for railway power supply systems under normal operation. Spectrum and distortion analyses in measurement data are variously described in PART II

  • PDF

Harmonic Generation and System Response Chartcteristics in Electrified Railway(II) - Focused on Measurement and Analysis - (전기철도에서의 고조파 발생과 계통응답특성(II) - 고조파 측정분석을 중심으로 -)

  • Oh Kwang-Hae;Lee Han-Min
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.499-504
    • /
    • 2003
  • Harmonic current originating from electric locomotives can be magnified due to the impedance characteristics of power supply circuit and bring about various problems. That is, electromagnetic interference with communication lines, operational trouble in signaling, overheat and/or vibration in power capacitor, mis-operation in protection relay and so on. Therefore, the exact assessment of the harmonic current flow must be undertaken at design and planning stage for the electric traction systems. For these reasons, this study propose a new approach to model and to analyse traction power feeding system focused on system response to current and voltage harmonic(PART I ). Measurements of harmonics are also performed for railway power supply systems under normal operation. Spectrum and distortion analyses in measurement data are variously described in PART II

  • PDF

Harmonic Generation and System Response Characteristics in Electrified Railway(I) - Focused on System Response Characteristics - (전기철도에서의 고조파 발생과 계통응답특성(I) - 계통응답특성을 중심으로 -)

  • 오광해;이장무
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.1
    • /
    • pp.60-64
    • /
    • 2004
  • Harmonic current originating from electric locomotives can be magnified due to the impedance characteristics of power supply circuit and bring about various problems. That is, electromagnetic interference with communication lines, operational trouble in signaling, overheat and/or vibration in power capacitor, mis-operation in protection relay and so on. Therefore, the exact assessment of the harmonic current flow must be undertaken at design and planning stage for the electric traction systems. for these reasons, this study propose a new approach to model and to analyse traction power feeding system focused on system response to current and voltage harmonic(PART I). Measurements of harmonics are also performed for railway power supply systems under normal operation. Spectrum and distortion analyses in measurement data are variously described in PART II.

Analysis of degradation of distribution lightning arresters as degradation degree (열화정도에 따른 배전용 피뢰기의 열화특성 분석)

  • 장동욱;박동배;박영국;이용희;강성화;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.140-143
    • /
    • 2000
  • The primary function of ZnO lightning arrester is to protect transmission and distribution equipment from overvoltages and to absorb electrical energy resulting from lightning or switching surges and form temporary overvoltage. However, ZnO lightning arrester are known to exhibit an increases in resistive current with time, the rate of increase being exacerbated with increasing applied voltage and ambient temperature. So, it is important to the leakage current measurement of ZnO lightning arrester. In addition, since the resistive leakage current caused by deterioration of ZnO lightning arrester mainly caused an increase of the third harmonic component, thereby it is possible the arrester degradation diagnosis by measuring the third harmonic component in the total leakage current. The leakage current and third harmonic component are measured and used to investigate the degradation diagnosis of ZnO element of arrester. Also the SEM photography is used to investigate the change of crystal structure of ZnO element with degradation.

  • PDF

The comparison of harmonic detection methods on the Power line (상용(220V/60Hz)전원의 고조파 검출 방식의 비교)

  • Jung Dong-Youl;Hwang Hwan-Young;Park Chong-Yeun
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.883-886
    • /
    • 2004
  • The current harmonic detector consists of the load current detector and the notch filter. It obtains the harmonic current from the output of the load current detector using the Notch filter. The GIC in the notch filter is used instead of inductor to minimize the magnitude and phase characteristics variation caused by using twin-T notch filter and passive elements(inductor).

  • PDF

A PI Control Algorithm with Zero Static Misadjustment for Tracking the Harmonic Current of Three-Level APFs

  • He, Yingjie;Liu, Jinjun;Wang, Zhaoan;Zou, Yunping
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.175-182
    • /
    • 2014
  • Tracking harmonic current quickly and precisely is one of the keys to designing active power filters (APF). In the past, the current state feedback decoupling PI control was an effective means for three-phase systems in the current control of constant voltage constant frequency inverters and high frequency PWM reversible rectifiers. This paper analyzes in detail the limitation of the conventional PI conditioner in the APF application field and presents a novel PI control method. Canceling the delay of one sampling period and the misadjustment for tracking the harmonic current is the key problem of this PI control. In this PI control, the predictive output current value is obtained by a state observer. The delay of one sampling period is remedied in this digital control system by the state observer. The predictive harmonic command current value is obtained by a repetitive predictor synchronously. The repetitive predictor can achieve better predictions of the harmonic current. By this means, the misadjustment of the conventional PI control for tracking the harmonic current is cancelled. The experiment results with a three-level NPC APF indicate that the steady-state accuracy and dynamic response of this method are satisfying when the proposed control scheme is implemented.

Analysis of Reduction Effect of Three Harmonic Currents by Zigzag Wiring of Single Phase Transformer (단상 변압기 지그재그 결선에 의한 3고조파 전류 저감 효과 분석)

  • Kim, Jong-Gyeum;Kim, Ji-Myeong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.3
    • /
    • pp.99-104
    • /
    • 2017
  • The three-phase four-wire power distribution system can be used to supply power to single-phase and three-phase loads at the same time. There are linear loads and nonlinear loads as single-phase loads connected to each phase. The nonlinear load generates a harmonic current during the power energy conversion process. In particular, the single-phase nonlinear load has a higher proportion of generation of the third harmonic current than the harmonics of the other orders. In a three-phase four-wire system, the third harmonic current flows through the neutral wire to the power supply side, affecting the power supply side and the line. Furthermore, the magnitude of the current flowing in the neutral line can be higher than the current flowing in the individual phase. If the neutral current is higher than the phase current, the breaker may be blocked. Therefore, it is necessary to reduce the amount of current flowing in the neutral line by harmonics. There is a method of zigzag connecting a single phase transformer by a method of reducing 3 harmonic current. In this study, the method of reducing the magnitude of the three harmonic currents flowing through the zigzag wire by comparing the polarity and the negative polarity characteristics of the single phase transformer was compared through measurement and simulation.

Dual Current Control Scheme of a Grid-connected Inverter for Power Quality Improvement in Distributed Generation Systems (분산 전원 시스템의 전력품질 향상을 위한 계통연계 인버터의 이중 전류제어 기법)

  • Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.9
    • /
    • pp.33-41
    • /
    • 2015
  • To improve the power quality of distributed generation (DG) systems even in the presence of distorted grid condition, dual current control scheme of a grid-connected inverter is proposed. The proposed current control scheme is achieved by decomposing the inverter state equations into the fundamental and harmonic components. The derived models are employed to design dual current controllers. The conventional PI decoupling current controller is used in the fundamental model to control the main power flow in DG systems. At the same time, the predictive control is applied in the harmonic model to suppress undesired harmonic currents to zero quickly. To decompose the voltage inputs and state variables into the fundamental and harmonic components, the fourth order band pass filter (BPF) is designed in the discrete-time domain for a digital implementation. For experimental verification, 2kVA prototype of a grid-connected inverter has been constructed using digital signal processor (DSP) TMS320F28335. The effectiveness of the proposed strategy is demonstrated through comparative simulation and experimental results.

The Realization of a Single-Phase Parallel Active Power Filter to Eliminate Harmonics of Source Current Generated by Nonlinear Loads (비선형부하에 의해 발생한 전원 전류의 고조파를 제거하기 위한 단상 병렬형 Active Power Filter의 구현)

  • Jang, Mok-Soon;Lee, Hu-Chan;Kim, Sang-Hoon;Park, Jong-Yeon
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.220-221
    • /
    • 2006
  • This paper presents a single-phase parallel active power filter with an analog control circuit to eliminate for harmonic source currents generated by nonlinear loads. The proposed system removes the harmonic source currents by injecting a compensation current that is 180' out of phase with the load harmonic current. The detection of the load harmonics is realized by a simple new structure, referred to the Notch Filter with GIC (Generalized Impedance Converter), which has higher Q than existing harmonic detecters and a simpler structure. The compensation current is obtained using the proposed harmonic detection circuit, DC-Link voltage, and output current of the full-bridge inverter controlled current mode PWM controller. The operation of the proposed system is verified experimentally.

  • PDF

Novel Method for Circulating Current Suppression in MMCs Based on Multiple Quasi-PR Controller

  • Qiu, Jian;Hang, Lijun;Liu, Dongliang;Geng, Shengbao;Ma, Xiaonan;Li, Zhen
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1659-1669
    • /
    • 2018
  • An improved circulating current suppression control method is proposed in this paper. In the proposed controller, an outer loop of the average capacitor voltage control model is used to balance the sub-module capacitor voltage. Meanwhile, an individual voltage balance controller and an arm voltage balance controller are also used. The DC and harmonic components of the circulating current are separated using a low pass filter. Therefore, a multiple quasi-proportional-resonant (multi-quasi-PR) controller is introduced in the inner loop to eliminate the circulating harmonic current, which mainly contains second-order harmonic but also contains other high-order harmonics. In addition, the parameters of the multi-quasi-PR controller are designed in the discrete domain and an analysis of the stability characteristic is given in this paper. In addition, a simulation model of a three-phase MMC system is built in order to confirm the correctness and superiority of the proposed controller. Finally, experiment results are presented and compared. These results illustrate that the improved control method has good performance in suppressing circulating harmonic current and in balancing the capacitor voltage.