• Title/Summary/Keyword: Harmful algal bloom species

Search Result 62, Processing Time 0.03 seconds

Phylogenetic Analysis of Dinoflagellate Gonyaulax polygramma SteinResponsible for Harmful Algal Blooms Based on the Partial LSU rDNASequence Data

  • Kim, Keun-Yong;Kim, Young-Soo;Hwang, Choul-Hee;Lee, Chang-Kyu;Lim, Wol-Ae;Kim, Chang-Hoon
    • ALGAE
    • /
    • v.21 no.3
    • /
    • pp.283-286
    • /
    • 2006
  • This study carried out phylogenetic analysis of dinoflagellate Gonyaulax polygramma which was responsible for a harmful algal bloom episode in Korea in 2004. Molecular phylogenetic tree inferred from the partial LSU rDNA data showed that G. polygramma came up among the monophyletic Gonyaulax clade, but did not have apparent genetic affiliation to other Gonyaulax species. This result appears to be consistent with characteristic morphological features of G. polygramma such as epitheca sharply tapering to the apex and thecal plates ornamented with numerous longitudinal striations.

The Algicidal Activity of Arthrobacter sp. NH-3 and its Algicide against Alexandrium catenella and other Harmful Algal Bloom Species (Alexandrium catenella와 유해성 적조종에 대한 Arthrobacter sp. NH-3와 살조물질의 살조능)

  • Jeong, Seong-Yun;Jeoung, Nam Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.2
    • /
    • pp.139-148
    • /
    • 2015
  • BACKGROUND: The aim of this study was to isolate and identify algicidal bacterium that tends to kill the toxic dinoflagellate Alexandrium catenella, and to determine the algicidal activity and algicidal range of algicide. METHODS AND RESULTS: Among of algicidal bacteria isolated in this study, NH-3 isolate was the strongest algicidal activity against A. catenella. NH-3 isolate was identified on the basis of biochemical characteristics and analysis of 16S rRNA gene sequences. The NH-3 isolate showed over 99% homology with Arthrobacter oxydans, and was designated as Arthrobacter sp. NH-3. The optimal culture conditions were $25^{\circ}C$, initial pH 7.0, and 2.0% (w/v) NaCl concentration. The algicidal activity of Arthrobacter sp. NH-3 was significantly increased to maximum value in the late of logarithmic phase. Arthrobacter sp. NH-3 showed algicidal activity through indirect attack, which excreted active substance into the culture filtrate. When 10% culture filtrate of NH-3 was applied to A. catenella, 100% of algal cells were destroyed within 30 h. In addition, the algicidal activities were increased in dose and time dependent manners. The pure algicide was isolated from the ethyl acetate extract of the culture filtrate of NH-3 by using silica gel column chromatography and high performance liquid chromatography (HPLC). We investigated the algicidal activity of this algicide on the growth of harmful algal bloom (HAB) species, including A. catenella. As a result, it showed algicidal activity against several HAB species at a concentration of $100{\mu}g/mL$ and had a relatively wide host range. CONCLUSION: Taken together, our results suggest that Arthrobacter sp. NH-3 and its algicide could be a candidate for controlling of toxic and harmful algal blooms.

Timing for the First Appearance of Swimming Cells of Harmful Algae, Cochlodinium polykrikoides and Their Growth Characteristics in the South Sea of Korea

  • Lee, Chang-Kyu;Jung, Chang-Su;Lee, Sam-Geun;Kim, Suk-Yang;Lim, Wol-Ae;Kim, Hak-Gyoon;Kang, Young-Sil
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.10a
    • /
    • pp.204-205
    • /
    • 2001
  • Manful algae, Cochlodinium polykrikoides has damaged to fisheries organisms by making massive blooms mainly in the South Sea during the higher water temperature season since 1995 in Korea. Ecological and hydrodynamic studies of the species offer useful information in understanding its bloom mechanism giving promising data for the modeling and prediction of the blooms. (omitted)

  • PDF

Ichthyotoxicity of a harmful dinoflagellate Cochlodinium polykrikoides: Aspect of biochemical and hematological responses of fish exposed to Algal blooms

  • Kim, Chang-Sook;Bae, Heon-Meen;Cho, Yong-Chul
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2000.10a
    • /
    • pp.141-142
    • /
    • 2000
  • To elucidate the ichthyotoxic mechanisms of a harmful dinoflagellate Cochlodinium polykrikoides, biochemical and hematological responses of fish exposed to blooms were investigated. Particularly, based on our finding that oxidative damages of gill were associated with fish mortality, dysfunction of ion-transporting enzymes and secretion of gill mucus of fish exposed to this bloom species were examined. (omitted)

  • PDF

Sensitive, Accurate PCR Assays for Detecting Harmful Dinoflagellate Cochlodinium polykrikoides Using a Specific Oligonucleotide Primer Set

  • Kim Chang-Hoon;Park Gi-Hong;Kim Keun-Yong
    • Fisheries and Aquatic Sciences
    • /
    • v.7 no.3
    • /
    • pp.122-129
    • /
    • 2004
  • Harmful Cochlodinium polykrikoides is a notorious harmful algal bloom (HAB) species that is causing mass mortality of farmed fish along the Korean coast with increasing frequency. We analyzed the sequence of the large subunit (LSD) rDNA D1-D3 region of C. polykrikoides and conducted phylogenetic analyses using Bayesian inference of phylogeny and the maximum likelihood method. The molecular phylogeny showed that C. polykrikoides had the genetic relationship to Amphidinium and Gymnodinium species supported only by the relatively high posterior probabilities of Bayesian inference. Based on the LSU rDNA sequence data of diverse dinoflagellate taxa, we designed the C. polykrikoides-specific PCR primer set, CPOLY01 and CPOLY02 and developed PCR detection assays for its sensitive, accurate HAB monitoring. CPOLY01 and CPOLY02 specifically amplified C. polykrikoides and did not cross-react with any dinoflagellates tested in this study or environmental water samples. The effective annealing temperature $(T_{p})$ of CPOLY01 and CPOLY02 was $67^{\circ}C$. At this temperature, the conventional and nested PCR assays were sensitive over a wide range of C. polykrikoides cell numbers with detection limits of 0.05 and 0.0001 cells/reaction, respectively.

Metaproteomic analysis of harmful algal bloom in the Daechung reservoir, Korea

  • Choi, Jong-Soon;Park, Yun Hwan;Kim, Soo Hyeon;Park, Ju Seong;Choi, Yoon-E
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.3
    • /
    • pp.424-432
    • /
    • 2020
  • The present study aimed to analyze the metaproteome of the microbial community comprising harmful algal bloom (HAB) in the Daechung reservoir, Korea. HAB samples located at GPS coordinates of 36°29'N latitude and 127°28'E longitude were harvested in October 2013. Microscopic observation of the HAB samples revealed red signals that were presumably caused by the autofluorescence of chlorophyll and phycocyanin in viable cyanobacteria. Metaproteomic analysis was performed by a gelbased shotgun proteomic method. Protein identification was conducted through a two-step analysis including a forward search strategy (FSS) (random search with the National Center for Biotechnology Information (NCBI), Cyanobase, and Phytozome), and a subsequent reverse search strategy (RSS) (additional Cyanobase search with a decoy database). The total number of proteins identified by the two-step analysis (FSS and RSS) was 1.8-fold higher than that by one-step analysis (FSS only). A total of 194 proteins were assigned to 12 cyanobacterial species (99 mol%) and one green algae species (1 mol%). Among the species identified, the toxic microcystin-producing Microcystis aeruginosa NIES-843 (62.3%) species was the most dominant. The largest functional category was proteins belonging to the energy category (39%), followed by metabolism (15%), and translation (12%). This study will be a good reference for monitoring ecological variations at the meta-protein level of aquatic microalgae for understanding HAB.

Identification of Cochlodinium polykrikoides against Gyrodinium impudicum and Gymnodinium catenatum in Field Samples using FITC Lectin Probes

  • Cho Eun Seob;Kang Dong Woo;Cho Yong Chul
    • Fisheries and Aquatic Sciences
    • /
    • v.3 no.2
    • /
    • pp.83-87
    • /
    • 2000
  • We have investigated lectin binding patterns in order to apply binding records of previous laboratory experiments to field settings before the first ourbreaks of harmful algal bloom (HAB). Although cells were grown under different conditions, the binding patterns were the same as in the control. In addition, culture days was not associated with the binding patterns, when compared with the control. In nature, this results suggest that ECA, HPA and WGA lectin are able to discriminate between C. polykrikoides and G. impudicum, as well as ECA and SBA have a capability as a tool for differentiating between C. polyrikoides and G. catenatum, although these species are closely similar under the light microscope fiexed with Lugol solution.

  • PDF

The Spatio-Temporal Progress of Cochlodinium polykrikoides Blooms in the Coastal Waters of Korea (한국연안의 Cochlodinium polykrikoides 적조 발생과 변천)

  • KIM Hak Gyoon;JUNG Chang-Su;LIM Wol-Ae;LEE Chang-Kyu;KIM Sook-Yang;YOUN Sung-Hwa;CHO Yong-Chul;LEE Sam-Geun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.6
    • /
    • pp.691-696
    • /
    • 2001
  • The first bloom of Cochlodinium polykrikoides was observed in the estuary of Nak-dong river near Pusan in Korea in 1982. Since then, there have been irregular blooms, sometimes spread over the adjoining .to Jinhae Bay even though it was confined to the bay and its vicinites until 1988. It had been outbroken frequently in the adjacent to Tongyeong, Geoje, Namhae and Yeosu coast since 1989. It became widespread along the coast of the South Sea to the East Sea of Korea in 1995. And in October in 1998 and 1999, the bloom had been taken place in Kunsan coast of Yellow Sea. According to the observations in situ, the frequency of occurrence has been increased year by year. The prevailing bloom season was from July to October with peak in September. The duration of the bloom became longer with the year, and sometimes lasted more than one month. The density of the bloom did not exceed 5,000 cells $mL^{-1}$until 1991, but it increased year by year to the highest of 43,000 cells $mL^{-1}$ in 1999. With respect to the assembleges of species in dinoflagellate blooms, C. polykrikoides was one of the important species with diatoms and the other dinoflagellates in 1980s. But since then, C. polykrikoides made an almost monospecific bloom. Based on two decadal observations of C. polykrikoides blooms, it became widespread throughout whole coast of the Korea, persistent for about one or two month long in some year, and monospecisc high density blooms. It was reported that significant fish mortalities were caused by this harmful dinoflagellate blooms especially in the fishfarms accomodating intensive fish cages such as Tongyeong, Namhae-do, Geoje, Yeosu and Geomun-do fishfarming yards. This widespread and persistent harmful algal blooms impede the development of marine aquaculture industries.

  • PDF

Eco-friendly Control of Harmful Algal Bloom Species Using Biological Predators (포식성 천적생물을 이용한 친환경 유해조류 제어기술 개발)

  • Kim, Sok;Lee, Changsu;Vo, Thi-Thao;Han, Sang-Il;Choi, Yoon-E
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.2
    • /
    • pp.91-96
    • /
    • 2016
  • This study presents the potentiality of harmful algal bloom (HAB) control through the zooplankton, Daphnia magna. In case of co-cultivated D. magna with cyanobacteriums (Microcystis aeruginosa, Anabaena variabilis, and Limnothrix planctonica), the D. magna showed the $80.2{\pm}4.2%$, $39.7{\pm}4.0%$, and $25.9{\pm}10.9%$ of control efficiency for M. aeruginosa, A. variabilis and L. planctonica, respectively. Furthermore, algal control was investigated by using supernatant including metabolite/secretion of D. magna. The algal control efficiencies of supernatant were recorded as $24.9{\pm}9.9%$ and $8.9{\pm}4.0%$ for M. aeruginosa and A. variabilis, respectively. From the results of present study, it may be possible to provide a feasible way for development of eco-friendly HAB control methods.

Phylogenetic Analysis of Harmful Algal Bloom (HAB)-Causing Dinoflagellates Along the Korean Coasts, Based on SSU rRNA Gene

  • Kim, Se-Hee;Kim, Keun-Yong;Kim, Chang-Hoon;Lee, Woo-Sung;Chang, Man;Lee, Jung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.959-966
    • /
    • 2004
  • Twenty-three cultures of harmful algal bloom (HAB)-(causing dinoflagellates were isolated from the coastal waters of Korea. For each of the 14 morphospecies, the nuclearencoded small subunit (SSU) rDNA was analyzed to determine the phylogenetic relatedness of the species. Despite temporal and spatial isolation, 3-4 clonal cultures of Alexandrium catenella, Cochlodinium polykrikoides, and Gymnodinium catenatum had 100% identical SSU rDNA sequences. In contrast, heterogeneities in the SSU rDNA sequences were observed in Akashiwo sanguinea and Lingulodinium polyedrum strains. Extreme sequence polymorphism was shown within the SSU rRNA genes of an Al. tamarense clonal culture. A homology search in GenBank revealed that 11 dinoflagellate species were located in clusters corresponding to their morphological classification. The SSU rDNA sequences of C. polykrikoides, Gyrodinium instriatum, and Pheopolykrikos hartmannii, which were determined for the first time in this study, showed the following phylogenetic relationships: C. polykrikoides formed an independent branch separated from other dinoflagellates; Gyr. instriatum was placed in a monophyletic group with Gyr. dorsum and Gyr. uncatenum; and Ph. hartmanii, which forms a distinct two-celled pseudocolony, belonged to Gymnodinium sensu Hansen and Moestrup.