• Title/Summary/Keyword: Hardware in the loop test

Search Result 155, Processing Time 0.029 seconds

Development of Hardware-in-the-Loop Simulator for EHB Systems (EHB 시스템을 위한 Hardware-in-the-Loop 시뮬레이터 개발)

  • 허승진;박기홍;이해철;김태우;김형수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1139-1143
    • /
    • 2003
  • HILS(Hardware-In-the-Loop Simulation) is a scheme that incorporates hardware components of primary concern in the numerical simulation environment. Due to its advantages over actual vehicle test and pure simulation, HILS is being widely accepted in automotive industries as test benches for vehicle control units. Developed in this study is a HILS system for EHB(Electro-Hydraulic Brake) systems that include a high pressure generator and a valve control system that independently modulates the brake pressures at four wheels. An EHB control logic was tested in the HILS system. Test results under various driving conditions are presented and compared with the VDC logic.

  • PDF

Evaluation of electronic stability controllers using hardware-in-the-loop vehicle simulator

  • Emirler, Mumin Tolga;Gozu, Murat;Uygan, Ismail Meric Can;Boke, Tevfik Ali;Guvenc, Bilin Aksun;Guvenc, Levent
    • Advances in Automotive Engineering
    • /
    • v.1 no.1
    • /
    • pp.123-141
    • /
    • 2018
  • Hardware-in-the-loop (HiL) simulation is a very powerful tool to design, test and verify automotive control systems. However, well-validated and high degree of freedom vehicle models have to be utilized in these simulations in order to obtain realistic results. In this paper, a vehicle dynamics model developed in the Carsim Real Time program environment and its validation has been performed using experimental results. The developed Carsim real time model has been employed in the Tofas R&D hardware-in-the-loop simulator. Experimental and hardware-in-the-loop simulation results have been compared for the standard FMVSS No. 126 test and the results have been found to be in good agreement with each other. Two electronic stability control (ESC) algorithms, named the Basic ESC and the Integrated ESC, taken from the earlier work of the authors have been tested and evaluated in the hardware-in-the-loop simulator. Different evaluation methods have been formulated and used to compare these ESC algorithms. As a result, the Integrated ESC system has been shown superior performance as compared to the Basic ESC algorithm.

Development of a Hardware-In-Loop (HIL) Simulator for Spacecraft Attitude Control Using Momentum Wheels

  • Kim, Do-Hee;Park, Sang-Young;Kim, Jong-Woo;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.347-360
    • /
    • 2008
  • In this paper, a Hardware-In-the-Loop simulator to simulate attitude control of space craft using momentum wheels is developed. The simulator consists of a spherical air bearing system allowing rotation and tilt in all three axes, three momentum wheels for actuation, and an AHRS (Attitude Heading Reference System). The simulator processes various types of data in PC104 and wirelessly communicates with a host PC using TCP/IP protocol. A simple low-cost momentum wheel assembly set and its drive electronics are also developed. Several experiments are performed to test the performance of the momentum wheels. For the control performance test of the simulator, a PID controller is implemented. The results of experimental demonstrations confirm the feasibility and validity of the Hardware-In-the-Loop simulator developed in the current study.

Implementation and Test of 3-level NPC VSC-HVDC System using Hardware-in-the-Loop Simulation (Hardware-in-the-Loop Simulation을 이용한 3-레벨 NPC 전압형 HVDC 시스템 구현 및 테스트)

  • Yoo, Hyeong-Jun;Kim, Nam-Dae;Kim, Hak-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.343-348
    • /
    • 2014
  • Recently, applications of VSC-HVDC systems to power systems are growing because of their control ability of reactive power. Meanwhile, the hardware-in-the-loop simulation (HILS) based on the real-time digital simulator has been applying to develop and test imbedded controllers and systems in the power industry to decrease costs and to save time. In this paper, a 3-level neutral point clamped (NPC) VSC-HVDC system is modeled and the embedded controllers of the NPC VSC-HVDC system are designed. The designed controllers are implemented by TMS320F28335. The TMS320F28335-based controllers of the NPC VSC-HVDC system are tested using the HILS.

An Investigation of Vehicle-to-Vehicle Distance Control Laws Using Hardware-in-the Loop Simulation (Hardware-in-the Loop Simulation 을 통한 차간거리 제어시스템의 제어 성능 연구)

  • Yi, Kyong-Su;Lee, Chan-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1401-1407
    • /
    • 2002
  • This paper represents an investigation of the vehicle-to-vehicle distance control system using Hardware-in-the-Loop Simulation(HiLS). Control logic is primarily developed and tested with a specially equipped test vehicle. Establishment of an efficient and low cost development tool is a very important issue, and test vehicle approach is costly and time consuming. HiLS method is useful in the investigation of driver assistance and active safety systems. The HiLS system consists of a stepper motor for throttle control, a hydraulic brake system with an electronic vacuum booster, an electronic controller unit, a data logging computer which are used to save vehicle states and signals of actuator through a CAN and a simulation computer using mathematical vehicle model. Adaptation of a CAN instead of RS-232 Serial Interface for communication is a trend in the automotive industry. Since this environment is the same as a test vehicle, a control logic verified in laboratory can be easily transferred to a test vehicle.

HILS(Hardware-In-the-Loop Simulation) Development of a Steering HILS System (전동식 동력 조향 장치 시험을 위한 HILS(Hardware-In-the-Loop Simulation) 시스템 개발)

  • 류제하;노기한;김종협;김희수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.105-111
    • /
    • 1999
  • The paper presents development of a Hardware-In-the-Loop simulation (HILS) system for the purpose of testing performance, stability, and reliability of an electronic power steering system(EPS). In order to realistically test an EPS by the proposed HILS apparatus, a simulated uniaxial dynamic rack force is applied physically to the EPS hardware by a pnumatic actuator. An EPS hardware is composed of steering wheel &column, a rack & pinion mechanism, andas motor-driven power steering system. A command signal for a pneumatic rack-force actuator is generated from the vehicle handling lumped parameter dynamic model 9software) that is simulated in real time by using a very fast digital signal processor. The inputs to the real-time vehicle dynamic simulation model are a constant vehicle forward speed and from wheel steering angles driven through a steering system by a driver. The output from a real-time simulation model is an electric signal that is proportional to the uniaxial rack force. The vehicle handling lumped parameter dynamic model is validated by a fully nonlinear constrained multibody vehicle dynamic model. The HILS system simulation results sow that the proposed HILS system may be used to realistically test the performance stability , and reliability of an electronic power steering system is a repeated way.

  • PDF

A Strategy to Evaluate Semi-Active Suspension System using Real-Time Hardware-in-the-Loop Simulation (실시간 Hardware-in-the-Loop 시뮬레이션을 이용한 반능동 현가시스템 특성 평가)

  • Choi, G.J.;Noh, K.H.;Yoo, Y.M.;Kim, H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.186-194
    • /
    • 2001
  • To meet the challenge of testing increasingly complex automotive control systems, the real-time hardware-in-the-loop(HIL) simulation technology has been developed. In this paper, a strategy for evaluation of semiactive suspension systems using real-time HIL simulation is presented. A multibody vehicle model is adopted to simulate vehicle dynamic motions accurately. Accuracy of the vehicle simulation results is compared to that of the real vehicle field test and proven to be very accurate. The controller and stepping motor to adjust semi-active damper stage are equipped as external hardwares and connected to the real-time computer which has vehicle dynamic model. Open and closed loop test methods are used to evaluate a controlled suspension system and the system's operations are verified it is found that the proposed evaluation methods can be used well for the verification of semi-active suspension systems.

  • PDF

Attitude Controller Design and Test of Korea Space Launch Vehicle-I Upper Stage

  • Sun, Byung-Chan;Park, Yong-Kyu;Roh, Woong-Rae;Cho, Gwang-Rae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.303-312
    • /
    • 2010
  • This paper introduces the upper stage attitude control system of KSLV-I, which is the first space launch vehicle in Korea. The KSLV-I upper stage attitude control system consists of two electro-hydraulic actuators and a reaction control system using cold nitrogen gas. A proportional, derivative, and integral controller is designed for the electro-hydraulic thrust vectoring system, and Schmidt trigger ON/OFF controllers are designed for the reaction control system. Each attitude controller is designed to have enough stability margins. The stability and performance of KSLV-I upper stage attitude control system is verified via hardware in the loop tests. Hardware in the loop tests are accomplished for perturbed flight conditions as well as nominal flight condition. The test results show that the attitude control loop of KSLV-I upper stage is very stable and the attitude controllers perform well for all flight conditions. Attitude controllers designed in this paper have been successfully applied to the first flight of KSLV-I on August 25, 2009. The flight test results show that all attitude controllers of the KSLV-I upper stage performed well and satisfied the accuracy specifications even during abnormal flight conditions.

Low Voltage Ride Through Test for Smart Inverter in Power Hardware in Loop System (전력 HILs를 활용한 스마트 인버터의 LVRT 시험)

  • Sim, Junbo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.101-105
    • /
    • 2021
  • Encouragement of DER from Korean government with several policies boosts DER installation in power system. When the penetration of DER in the grid is getting high, loss of generation with break-away of DER by abnormal grid conditions should be considered, because loss of high generation causes abnormal low frequency and additional operations of protection system. Therefore, KEPCO where is Korean power utility is preparing improvement in regulations for DERs connected to the grid to support abnormal grid conditions such as low and high frequencies or voltages. This is called 'Ride Through' because the requirement is for DER to maintain grid connection during required periods when abnormal grid conditions occur. However, it is not easy to have a test for ride through capability in reality because emulation of abnormal grid conditions is not possible in real power system in operation. Also, it is not easy to have a study on grid effect when ride through capability fails with the same reason. PHILs (Power Hardware In the Loop System) makes it possible to analyze power system and hardware performance at once. Therefore, this paper introduces PHILs test methods and presents verification of ride through capability especially for low voltage grid conditions.