• Title/Summary/Keyword: Hardware Configuration

Search Result 290, Processing Time 0.029 seconds

Study on the Satellite Thermal Control Hardware Composed of Two Parallel Channels Working for Heat Pipe and Phase Change Material (열관과 상변화물질을 일체형으로 병렬 배열한 위성용 열제어 부품 연구)

  • Kim, Taig-Young;Hyun, Bum-Seok;Lee, Jang-Joon;Rhee, Ju-Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1087-1093
    • /
    • 2010
  • The satellite thermal control H/W composed of two parallel channels working for heat pipe (HP) and phase change material (PCM) is suggested for the high heat dissipating component which works intermittently with short duty. In a limited point of view, the HP-PCM device is a kind of off-the-shelf component that requires no dedicated configuration and thermal designs to PCM. Therefore, it can be used with less impact on the program cost and schedule different from most of the PCM applications. In present study the typical honeycomb structure radiator applying the HP-PCM device is designed and the detail thermal math model is developed for numerical analyses. The result comparison between without and with PCM shows that the HP-PCM device redistributes the peak heat around the whole mission period through the alternate melting and freezing of PCM, and, as a result, the maximum and minimum temperatures are effectively alleviated. The drawback of PCM application due to low thermal conductivity can be successfully resolved by means of parallel arrangement of HP channel.

A Study on Multicast ATM Switch with Tandem Crosspoints (탠덤크로스포인터 멀티캐스트 ATM 스위치 연구)

  • Ryul, Kim-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.1 s.39
    • /
    • pp.157-165
    • /
    • 2006
  • This paper proposes a new output-buffered multicast ATM switch with tandem crosspoints switching fabric, named the MTCOS(Multicast Tandem Crosspoint Output-buffered Switch). The MTCOS consists of multiple simple crosspoint switch fabrics, named TCSF(Tandem Crosspoint Switch Fabric) , and concentrated output buffers for efficient multicasting. The TCSF resolves the cell delay deviation problem which the self-routing crossbar switches inherently have. Further, it offers multiple concurrent pathes from one input to multiple output ports. It also provides multi-channel switching by easy software configuration and has several desirable characteristics such as scalability, high Performance, and modularity. A shared traffic concentration and output queuing strategies of the MTCOS results in lower cell loss as well as lower cell delay time over a wide range of multicast traffic. Furthermore, it has lower hardware complexity than that of the SCOQ and Knockout multicast switch to achieve the same Knockout concentration rate as the conventional switches. It is shown that the proposed switch can be easily applied to design high performance for any multicast traffic by analytic analysis and computer simulation.

  • PDF

Performance Comparative Analysis Of Open Source Software for the New Generation of V-World Architecture Configuration (차세대 브이월드 아키텍처 구성을 위한 공개 소프트웨어 성능 비교 분석)

  • Jang, Han Sol;Jang, Jun Sung;Go, Jun Hee;Jang, In Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.3
    • /
    • pp.19-27
    • /
    • 2016
  • Advance in Information and Communication Technology (ICT) is intensely influenced to increase importance of Software on global ICT industries. The trend of technological development has been transformed from hardware-oriented environment to software-oriented environment. This industrial transformation brought novel trend to Software market. Open Source Software (OSS) has been widely distributed for private uses. At the same time, many governmental offices are planning to expand the use of OSS. In this paper, we analyze the strength and weaknesses of OSSs for both Web and WAS servers based on 4 types of testing environments which are created by the combination of 5 selected OSSs. We anticipated to learn the optimal system architecture design for the next generation of V-World through this research.

Implementation and Performance Analysis of Multi-GNSS Signal Collection System using Single USRP

  • Park, Kwi Woo;Choi, Yun Sub;Lee, Min Joon;Lee, Sang Jeong;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.1
    • /
    • pp.11-20
    • /
    • 2016
  • In this paper, a system that can collect GPS L1 C/A, GLONASS G1, and BDS B1I signals with single front-end receiver was implemented using a universal software radio peripheral (USRP) and its performance was verified. To acquire the global navigation satellite system signals, hardware was configured using USRP, antenna, external low-noise amplifier, and external oscillator. In addition, a value of optimum local oscillator frequency was selected to sample signals from three systems with L1-band with a low sampling rate as much as possible. The comparison result of C/N0 between the signal collection system using the proposed method and commercial receiver using double front-end showed that the proposed system had 0.7 ~ 0.8dB higher than that of commercial receiver for GPS L1 C/A signals and 1 ~ 2 dB lower than that of commercial receiver for GLONASS G1 and BDS B1I. Through the above results, it was verified that signals collected using the three systems with a single USRP had no significant error with that of commercial receiver. In the future, it is expected that the proposed system will be combined with software-defined radio (SDR) and advanced to a receiver that has a re-configuration channel.

Tillage boundary detection based on RGB imagery classification for an autonomous tractor

  • Kim, Gookhwan;Seo, Dasom;Kim, Kyoung-Chul;Hong, Youngki;Lee, Meonghun;Lee, Siyoung;Kim, Hyunjong;Ryu, Hee-Seok;Kim, Yong-Joo;Chung, Sun-Ok;Lee, Dae-Hyun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.2
    • /
    • pp.205-217
    • /
    • 2020
  • In this study, a deep learning-based tillage boundary detection method for autonomous tillage by a tractor was developed, which consisted of image cropping, object classification, area segmentation, and boundary detection methods. Full HD (1920 × 1080) images were obtained using a RGB camera installed on the hood of a tractor and were cropped to 112 × 112 size images to generate a dataset for training the classification model. The classification model was constructed based on convolutional neural networks, and the path boundary was detected using a probability map, which was generated by the integration of softmax outputs. The results show that the F1-score of the classification was approximately 0.91, and it had a similar performance as the deep learning-based classification task in the agriculture field. The path boundary was determined with edge detection and the Hough transform, and it was compared to the actual path boundary. The average lateral error was approximately 11.4 cm, and the average angle error was approximately 8.9°. The proposed technique can perform as well as other approaches; however, it only needs low cost memory to execute the process unlike other deep learning-based approaches. It is possible that an autonomous farm robot can be easily developed with this proposed technique using a simple hardware configuration.

Accelerated Large-Scale Simulation on DEVS based Hybrid System using Collaborative Computation on Multi-Cores and GPUs (멀티 코어와 GPU 결합 구조를 이용한 DEVS 기반 대규모 하이브리드 시스템 모델링 시뮬레이션의 가속화)

  • Kim, Seongseop;Cho, Jeonghun;Park, Daejin
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.3
    • /
    • pp.1-11
    • /
    • 2018
  • Discrete event system specification (DEVS) has been used in many simulations including hybrid systems featuring both discrete and continuous behavior that require a lot of time to get results. Therefore, in this study, we proposed the acceleration of a DEVS-based hybrid system simulation using multi-cores and GPUs tightly coupled computing. We analyzed the proposed heterogeneous computing of the simulation in terms of the configuration of the target device, changing simulation parameters, and power consumption for efficient simulation. The result revealed that the proposed architecture offers an advantage for high-performance simulation in terms of execution time, although more power consumption is required. With these results, we discovered that our approach is applicable in hybrid system simulation, and we demonstrated the possibility of optimized hardware distribution in terms of power consumption versus execution time via experiments in the proposed architecture.

A Study on Development of the 3D Modeling System for Earthwork Environment (토공 작업환경의 3차원 모델링 시스템 개발에 관한 연구)

  • Yoo, Hyun-Seok;Chae, Myung-Jin;Kim, Jung-Yeol;Cho, Moon-Young
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.977-982
    • /
    • 2007
  • There have been many efforts in automatic object recognition using computing technologies. Especially in the development of automated construction equipment, automatic object recognition is very important issue for the proper equipment maneuvering. 3D laser scanning, which uses (time-of-flight) method to construct the 3-dimensional information, is applied to the civil earth work environment for its high accuracy, quick data collection, and object recognition capability that will be developed by the authors in the future. The 3D earth model is also used as a fundamental information for intelligent earth work task planning. This paper presents the analysis of the 3D laser scanner market and selection of the most optimum 3D scanner for the intelligent earth work planning. As well as the hardware configuration for the automated 3D earth modeling is developed but also the software structure and detailed user interface are designed in this research. In addition, it is presented in this paper that the accuracy comparison test between TotalStation(R) which is a traditional survey tool and ScanStation(R). The accuracy test is done by relative distance measurement using known targets.

  • PDF

Experimental Study on Underwater Docking of a Visual Servoing Autonomous Underwater Vehicle (비쥬얼 서보 자율무인잠수정의 수중 도킹에 관한 실험적 연구)

  • Lee, Pan-Mook;Jeon, Bong-Hwan;Lee, Ji-Hong;Kim, Sea-Moon;Hong, Young-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.89-93
    • /
    • 2003
  • The Korea Research Institute of Ships and Ocean Engineering (KRISO), the ocean engineering branch of KORDI, has designed and manufactured a model of an autonomous underwater vehicle (AUV) to test underwater docking. This paper introduces the AUV model, ASUM, equipped with a visual servo control system to dock into an underwater station with a camera and motion sensors. To make a visual servoing AUV, this paper implemented the visual servo control system designed with an augmented state equation, which was composed of the optical flow model of a camera and the equation of the AUV's motion. The system design and the hardware configuration of ASUM are presented in this paper. A small long baseline acoustic positioning system was developed to monitor and record the AUV's position for the experiment in the Ocean Engineering Basin of KRISO, KORDI. ASUM recognizes the target position by processing the captured image for the lights, which are installed around the end of the cone-type entrance of the duct. Unfortunately, experiments are not yet conducted when we write this article. The authors will present the results for the docking test of the AUV in near future.

  • PDF

Design and Realization of a Digital PV Simulator with a Push-Pull Forward Circuit

  • Zhang, Jike;Wang, Shengtie;Wang, Zhihe;Tian, Lixin
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.444-457
    • /
    • 2014
  • This paper presents the design and realization of a digital PV simulator with a Push-Pull Forward (PPF) circuit based on the principle of modular hardware and configurable software. A PPF circuit is chosen as the main circuit to restrain the magnetic biasing of the core for a DC-DC converter and to reduce the spike of the turn-off voltage across every switch. Control and I/O interface based on a personal computer (PC) and multifunction data acquisition card, can conveniently achieve the data acquisition and configuration of the control algorithm and interface due to the abundant software resources of computers. In addition, the control program developed in Matlab/Simulink can conveniently construct and adjust both the models and parameters. It can also run in real-time under the external mode of Simulink by loading the modules of the Real-Time Windows Target. The mathematic models of the Push-Pull Forward circuit and the digital PV simulator are established in this paper by the state-space averaging method. The pole-zero cancellation technique is employed and then its controller parameters are systematically designed based on the performance analysis of the root loci of the closed current loop with $k_i$ and $R_L$ as variables. A fuzzy PI controller based on the Takagi-Sugeno fuzzy model is applied to regulate the controller parameters self-adaptively according to the change of $R_L$ and the operating point of the PV simulator to match the controller parameters with $R_L$. The stationary and dynamic performances of the PV simulator are tested by experiments, and the experimental results show that the PV simulator has the merits of a wide effective working range, high steady-state accuracy and good dynamic performances.

View-switchable High-Definition Multi-View Broadcasting over IP Networks (IP 네트워크에서 시점전환이 가능한 고화질 다시점 방송 시스템)

  • Lee, Seok-Hee;Lee, Ki-Young;Kim, Man-Bae;Han, Chung-Shin;Yoo, Ji-Sang;Kim, Jong-Won
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.4
    • /
    • pp.205-212
    • /
    • 2007
  • In this paper, we present a prototype of view-switchable high-definition (HD) multi-view video transmission system. One of the major bottlenecks for the multi-view broadcasting system has been the hardware cost and transmission bandwidth. The proposed system focuses on software-based design, transmission over IP multicast networks, and flexible system configuration to address aforementioned problems. In the proposed system, we implement software stereo HD multiplexing, demultipiexing and decoding, and take advantage of high-speed broadband convergence networks to deliver HD video in real-time. Moreover, the proposed system can be scalable and flexible in terms of the number of views. Furthermore, in order to display any multiview video on 3D display monitor, a face tracking system is integrated to our system. Therefore, users can watch the different stereoscopic video at its related locations.