• Title/Summary/Keyword: Hardness tests

검색결과 710건 처리시간 0.027초

SP-100 알루미늄 분말 에폭시의 경도 및 압축 강도 평가 (Estimation of Hardness and Compressive Strength of SP-100 Aluminum Powder Epoxy)

  • 한정영;김명훈;강성수
    • 대한기계학회논문집A
    • /
    • 제36권9호
    • /
    • pp.1041-1046
    • /
    • 2012
  • 본 연구에서는 SP-100 알루미늄 분말 에폭시의 경도 및 압축강도를 평가하기 위해, 후경화 조건을 달리한 5 종류의 시편에 대해 온도별 경도 측정 시험과 압축강도시험을 수행하였다. 온도별 표면경도 시험 결과, 후경화 온도가 높을수록 경도가 높게 나타나는 것을 확인하였다. 특히, Case 3과 Case 4의 경우가 다른 Case의 시편에 비해 상대적으로 높은 경도를 보임을 알 수 있었다. 압축시험을 통한 시편의 압축강도는 후경화를 실시한 시편들이 비교적 유사한 강성 및 강도를 나타내었으며 미실시한 시편은 열가소성 수지와 같은 압축응력곡선을 나타내었다.

BEARING소재 경도에 따른 구름접촉피로의 X선적 해석 (Analysis of Rolling Contact Fatigue of Ball Bearing with Various Hardness by X-ray Diffraction)

  • 이한영
    • Tribology and Lubricants
    • /
    • 제17권3호
    • /
    • pp.209-215
    • /
    • 2001
  • In view of the effects of the hardness of material on fatigue, rolling contact fatigue process in hard metals seems to differ from it in soft metals. This paper has been aimed to compare the rolling contact fatigue process according to the hardness of materials. Rolling contact fatigue tests using the ball bearings assembled with the inner race of four different hardness have been carried out. In addition, residual stress and half-value breadth on/below the inner raceway during individual rolling contact fatigue have been measured by X-ray diffraction. The results of this study showed that the change of residual stress and half-value breadth during the rolling contact fatigue on race way in hard metals is the same as in soft metals. However, plastic deformation by rolling contact in hard metals is in microscopic scale but only for soft metals in macroscopic scale.

Micro-hardness and Young's modulus of a thermo-mechanically processed biomedical titanium alloy

  • Mohammed, Mohsin Talib;Khan, Zahid A.;M., Geetha;Siddiquee, Arshad N.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제1권3호
    • /
    • pp.117-130
    • /
    • 2014
  • This paper presents a study on the influence of different thermo-mechanical processing (TMP) parameters on some required properties such as micro-hardness and Young's modulus of a novel near ${\beta}$ alloy Ti-20.6Nb-13.6Zr-0.5V (TNZV). The TMP scheme comprises of hot working above and below ${\beta}$ phase, solutionizing treatment above and below ${\beta}$ phase coupled with different cooling rates. Factorial design of experiment is used to systematically collect data for micro-hardness and Young's modulus. Validity of assumptions related to the collected data is checked through several diagnostic tests. The analysis of variance (ANOVA) is used to determine the significance of the main and interaction effects. Finally, optimization of the TMP process parameters is also done to achieve optimum values of the micro-hardness and Young's modulus.

Surface hardening and enhancement of Corrosion Resistance of AISI 310S Austenitic Stainless Steel by Low Temperature Plasma Nitrocarburizing treatment.

  • Lee, Insup
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 추계총회 및 학술대회 논문집
    • /
    • pp.175-177
    • /
    • 2012
  • A corrosion resistance and hard nitrocarburized layer was distinctly formed on 310 austenitic stainless steel substrate by DC plasma nitrocarburizing. Basically, 310L austenitic stainless steel has high chromium and nickel content which is applicable for high temperature applications. In this experiment, plasma nitrocarburizing was performed in a D.C. pulsed plasma ion nitriding system at different temperatures in $H_2-N_2-CH_4$ gas mixtures. After the experiment structural phases, micro-hardness and corrosion resistance were investigated by the optical microscopy, X-ray diffraction, scanning electron microscopy, micro-hardness testing and Potentiodynamic polarization tests. The hardness of the samples was measured by using a Vickers micro hardness tester with the load of 100 g. XRD indicated a single expanded austenite phase was formed at all treatment temperatures. Such a nitrogen and carbon supersaturated layer is precipitation free and possesses a high hardness and good corrosion resistance.

  • PDF

알루미늄 합금의 미끄럼마모 특성에 미치는 상대재 경도의 영향 (Analysis of Sliding Wear Properties for Aluminum Alloy According to the Hardness Values of the Mating Tool Steel)

  • 이한영;조용재;김태준;박원규
    • Tribology and Lubricants
    • /
    • 제26권2호
    • /
    • pp.105-110
    • /
    • 2010
  • In order to investigate the wear behavior of aluminum alloy depended on different hardness of the mating tool steel, sliding wear tests were conducted. It was found that the wear characteristics pattern of aluminum alloy for sliding speed was not affected by the hardness of the mating tool steel. However, the effects of the hardness of the mating tool steel exhibited only in relatively low sliding speed ranges. At these ranges, the wear rate of aluminum alloy decreased when increasing the hardness of the mating tool steel. This was attributed by the fact that $Al_2O_3$ particles released from the aluminum worn surface were crushed and embedded on the mating worn surface with high hardness level. At the high sliding speed ranges, wear of aluminum alloy was hardly occurred by the formation of thick $Al_2O_3$ film on the worn surface, regardless of the hardness of the mating tool steel.

HIP 처리 티타늄기 MMC 의 기계적 특성평가 (Estimation of Mechanical Properties of Tungsten-Fiber-Reinforced Ti-MMCs by Hot Isostatic Pressing)

  • 손선영;;이종형;김영태;이도경;손용제;장현덕
    • 대한기계학회논문집A
    • /
    • 제34권4호
    • /
    • pp.407-412
    • /
    • 2010
  • 새로운 티타늄기 MMCs(W/ Ti-6Al-4V)에 대한 기계적 특성에 대한 연구를 행하여 평가한 결과를 나타내었다. HIP(hot isostatic pressing) 제조법과 RS(Rotary Swaging) 2 차 가공을 통하여 텅스텐 섬유 함유율이 각각 6, 9, 12 vol%인 W/Ti-6Al-4V MMCs 를 제작하였으며, 경도는 기존의 Ti-6Al-4V 합금과 비교하여 20-30%, 인장강도는 50%(비강도-38%) 높은 값을 얻었다. 섬유 함유율 9vol.% 에서 가장 높은 인장 값을 나타내었으며, MMCs 에서 메트릭스와 계면 사이에 생성된 확산상에 의해서 경도 및 인장강도가 향상되었다. 또한 피로 강도를 향상 시키기 위한 방법으로 메트릭스의 질적 향상을 위한 HIP 제작조건에 대한 추가적인 연구가 필요하다.

Experimental study of welding effect on grade S690Q high strength steel butt joint

  • Chen, Cheng;Chiew, Sing Ping;Zhao, Mingshan;Lee, Chi King;Fung, Tat Ching
    • Steel and Composite Structures
    • /
    • 제39권4호
    • /
    • pp.401-417
    • /
    • 2021
  • This study experimentally reveals the influence of welding on grade S690Q high strength steel (HSS) butt joints from both micro and macro levels. Total eight butt joints, taking plate thickness and welding heat input as principal factors, were welded by shielded metal arc welding. In micro level, the microstructure transformations of the coarse grain heat affected zone (CGHAZ), the fine grain heat affected zone (FGHAZ) and the tempering zone occurred during welding were observed under light optical microscopy, and the corresponding mechanical performance of those areas were explored by micro-hardness tests. In macro level, standard tensile tests were conducted to investigate the impacts of welding on tensile behaviour of S690Q HSS butt joints. The test results showed that the main microstructure of S690Q HSS before welding was tempered martensite. After welding, the original microstructure was transformed to granular bainite in the CGHAZ, and to ferrite and cementite in the FGHAZ. For the tempering zone, some temper martensite decomposed to ferrite. The performed micro-hardness tests revealed that an obvious "soft layer" occurred in HAZ, and the HAZ size increased as the heat input increased. However, under the same level of heat input, the HAZ size decreased as the plate thickness increased. Subsequent coupon tensile tests found that all joints eventually failed within the HAZ with reduced tensile strength when compared with the base material. Similar to the size of the HAZ, the reduction of tensile strength increased as the welding heat input increased but decreased as the thickness of the plate increased.

Alloy718 마찰용접 후열처리재의 비커스 경도의 통계적 성질 (Statistical Properties of Vickers Hardness of Post Weld Heat Treated Friction Welded Parts in Alloy718)

  • 공유식;권혁용;김선진
    • 한국해양공학회지
    • /
    • 제23권6호
    • /
    • pp.105-110
    • /
    • 2009
  • The objective of this paper is to investigate the statistical properties of Vickers hardness (HV) for friction welded parts in a Ni-based super alloy (Alloy718). In the case of post weld heat treatment (PWHT) parts, hardness tests were repeated for three different applied loads, 100, 200, and 300 g, with a duration time of 10 seconds. The arithmetic means of the Vickers hardness in heat affected zone (HAZ) materials were smaller than those of the base metal (BM) in all of the applied loads. The coefficient of variation (COV) for the BM and HAZ decreased by increasing the applied load. The probability distribution of the Vickers hardness followed the Weibull distribution well. The distribution of the Vickers hardness was not found to be symmetric. The shape parameter and scale parameter increased by increasing the applied load at both the BM and HAZ.

Comparison of fracture strength, surface hardness, and color stain of conventionally fabricated, 3D printed, and CAD-CAM milled interim prosthodontic materials after thermocycling

  • Mesut Yildirim;Filiz Aykent;Mahmut Sertac Ozdogan
    • The Journal of Advanced Prosthodontics
    • /
    • 제16권2호
    • /
    • pp.115-125
    • /
    • 2024
  • PURPOSE. The purpose of this in vitro study was to investigate the fracture resistance, surface hardness, and color stain of 3D printed, CAD-CAM milled, and conventional interim materials. MATERIALS AND METHODS. A total of 80 specimens were fabricated from auto polymerizing polymethyl methacrylate (PMMA), bis-acryl composite resin, CAD-CAM polymethyl methacrylate resin (milled), and 3D printed composite resin (printed) (n = 20). Forty of them were crown-shaped, on which fracture strength test was performed (n = 10). The others were disc-shaped specimens (10 mm × 2 mm) and divided into two groups for surface hardness and color stainability tests before and after thermal cycling in coffee solution (n = 10). Color parameters were measured with a spectrophotometer before and after each storage period, and color differences (CIEDE2000 [DE00]) were calculated. The distribution of variables was measured with the Kolmogorov Smirnov test, and one-way analysis of variance (ANOVA), Tukey HSD, Kruskal-Wallis, Mann-Whitney U tests were used in the analysis of quantitative independent data. Paired sample t-test was used in the analysis of dependent quantitative data (P < .05). RESULTS. The highest crown fracture resistance values were determined for the 3D printed composite resin (P < .05), and the lowest were observed in the bis-acryl composite resin (P < .05). Before and after thermal cycling, increase in mean hardness values were observed only in 3D printed composite resin (P < .05) and the highest ΔE00 value were observed in PMMA resin for all materials (P < .05). CONCLUSION. 3D printing and CAD-CAM milled interim materials showed better fracture strength. After the coffee thermal cycle, the highest surface hardness value was again found in 3D printing and CAD-CAM milled interim samples and the color change of the bis-acryl resin-based samples and the additive production technique was higher than the PMMA resin and CAD-CAM milled resin samples.

경도변화에 따른 Al합금의 밀링가공시 가공 특성에 관한 연구(I) (A Study on the Cutting Characteristics of Al Alloy in End Milling for Various Hardnesses(I))

  • 김성일
    • 한국공작기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.82-87
    • /
    • 2006
  • The cutting tests of aluminum alloy with heat treatmented various hardnesses after rheo-fonning were carried out using CNC milling machine. The surface roughness(Ra, Rmax) of cut surface and cutting forces are measured at various cutting conditions such as low spindle speed, feed speed and hardness. In the CNC end-milling, the surface roughness increases as feed speed increases and decreases as spindle speed increases. However, the bulit-up edge has occurred on in case of low hardness and low feed speed. In experimental conditions, as the hardness of aluminum alloy increases, the surface roughness(Ra, Rmax) decreases