• Title/Summary/Keyword: Hardfacing Material

Search Result 13, Processing Time 0.028 seconds

Estimation of Hardfacing Material and Thickness of STD61 Hot-Working Tool Steels Through Three-Dimensional Heat Transfer and Thermal Stress Analyses (3 차원 열전달/열응력 해석을 통한 STD61 열간 금형강의 하드페이싱 재료 및 두께 예측)

  • Park, Na-Ra;Ahn, Dong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.427-436
    • /
    • 2014
  • The goal of this paper is to estimate proper hardfacing material and thickness of STD61 hot-working tool steel through three-dimensional heat transfer and thermal stress analyses. Stellite6, Stellite21 and 19-9DL superalloys are chosen as alternative hardfacing materials. The influence of hardfacing materials and thicknesses on temperature, thermal stress and thermal strain distributions of the hardfaced part are investigated using the results of the analyses. From the results of the investigation, it has been noted that a hardfacing material with a high conductivity and a thinner hardfaced layer are desired to create an effective hardfacing layer in terms of heat transfer characteristics. In addition, it has been revealed that the deviation of effective stress and principal strain in the vicinity of the joined region are minimized when the Stellite21 hardfaced layer with the thickness of 2 mm is created on the STD61. Based on the above results, a proper hardfacing material and thickness for STD61 tool steel have been estimated.

Machining Characteristics and Cutting Force Analysis of Hardfacing Overlay Welding in High Chromium Carbide (고크롬탄화물 하드페이싱 육성용접물의 가공특성과 절삭력 분석)

  • Kim, Min-Ho;Kim, Tae-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.5
    • /
    • pp.469-476
    • /
    • 2009
  • Hard facing overlay welding in high chromium carbide is a representative way of extending the fatigue life or recompensing damage, because workpiece surface is uniformly overlay-welded by alloy material. In general, grinding process is currently used for finish due to hardness of weld material. The development of tool material, such as PCBN, has made it possible to use turning instead of grinding. There are many advantages of hard Owning, as lower equipment costs, shorter setup time, fewer process steps, higher material removal rate, better surface integrity and the elimination of cutting fluid. In this paper, machining characteristics and cutting performance are examined to investigate turning possibility of overly welding in high chromium carbide.

  • PDF

Effect of dilution on micro hardness of Ni-Cr-B-Si alloy hardfaced on austenitic stainless steel plate for sodium-cooled fast reactor applications

  • Balaguru, S.;Murali, Vela;Chellapandi, P.;Gupta, Manoj
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.589-596
    • /
    • 2020
  • Many components in the assembly section of Sodium-cooled Fast Reactor are made of good corrosionresistant 316 LN Stainless Steel material. To avoid self-welding of the components with the coolant sodium at elevated temperature, hardfacing is inevitable. Ni-based colmonoy-5 is used for hardfacing due to its lower dose rate by Plasma Transferred Arc process due to its low dilution. Since Ni-Cr-B-Si alloy becomes very fluidic while depositing, the major height of the weld overlay rests inside the groove. Hardfacing is also done over the plain surface where grooving is not possible. Therefore, grooved and ungrooved hardfaced specimens were prepared at different travel speeds. Fe content at every 100 ㎛ of the weld overlay was studied by Energy Dispersive Spectroscopy and also the micro hardness was determined at those locations. A correlation between iron dilution from the base metal and the micro hardness was established. Therefore, if the Fe content of the weld overlay is known, the hardness at that location can be obtained using the correlation and vice-versa. A new correlation between micro hardness and dilution coefficient is obtained at different locations. A comparative study between those specimens is carried out to recommend the optimum travel speed for lower dilution.

The Microstructure Characteristics of Laser Remelted Cobalt-Based Hardfacing Alloys (레이저 Remelting 처리된 Co 기지 하드페이싱 합금의 미세조직 특성)

  • Han Won Jin;Kim Woo Sung
    • Laser Solutions
    • /
    • v.7 no.2
    • /
    • pp.27-38
    • /
    • 2004
  • Laser remelting of surface of cobalt-based hardfacing alloy can eliminate impurities and cracks and improve the wear resistance. In this present study, Stellite ${\sharp}6\;and\;{\sharp}21$ harfacing alloys were remelted by a 3kW CO2 laser. Hardness distribution and microstructures in the laser remelted zone was investigated. Our results showed that in proper laser parameters laser remelted surface of hardfacing alloy had more refined microstructure and more increased micro-hardness than the base material.

  • PDF

The Hardfacing Technology by PTA Overlaying Process (PTA 오버레이 공정을 이용한 산업설비부품의 표면경화기술)

  • Kil, S.C.;Kim, H.T.;Kim, S.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.358-361
    • /
    • 2009
  • The increasing interest in the surface modification technology by the plasma transferred arc overlaying process in the material processing is placing stringent demands on the manufacturing techniques and performance requirements, and the manufacture employs the high quality and efficiency plasma transferred arc overlaying technology. This paper covers recent technical trends of plasma transferred arc overlaying technology including the COMPENDEX DB analysis.

  • PDF

The Study on the Cavitation Erosion Behavior of Hardfacing Alloys for Nuclear Power Plants (원전 밸브용 경면처리 합금의 캐비테이션 에로젼 (cavitation erosion) 거동에 관한 연구)

  • O, Yeong-Min;Kim, Yun-Gap;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.308-316
    • /
    • 2002
  • The cavitation erosion behavior of wear-resistant hardfacing alloys such as Co-base Stellite 6, Fe-base Norem 02 and new Fe-base alloy were investigated up to 50 hours by using a 20kHz vibratory cavitation erosion test equipment. The crack, initiated easily at the interfaces between matrix and hard second phase, was repressed effectively in Stellite 6 because the matrix was hardened by phase transformation. For this reason, Stellite 6 showed an excellent cavitation erosion resistance compared to Norem 02. The phase transformation also occurred in Norem 02, but the increase of volume fraction of the interfaces caused the crack to be initiated frequently, thus resulting in a 1arge material loss. The matrix of NewAlloy was hardened effectively by vlongrightarrow$\alpha$' phase transformation and the volume fraction of the interfaces was very small compared to Norem 02. This caused the propagation of crack to the matrix to be repressed effectively. Therefore, NewAlloy showed a very excellent cavitation erosion resistance. It wasn't considered that the cavitation erosion resistance of NewAlloy was influenced the temperature of the bath filled with a distilled water up to $80^{\circ}C$.

Effect of the Raw Material and Coating Process Conditions on the Densification of 8 wt% Y2O3-ZrO2 Thermal Barrier Coating by Atmospheric Plasma Spray

  • Oh, Yoon-Suk;Kim, Seong-Won;Lee, Sung-Min;Kim, Hyung-Tae;Kim, Min-Sik;Moon, Heung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.628-634
    • /
    • 2016
  • The 8 wt% yttria($Y_2O_3$) stabilized zirconia ($ZrO_2$), 8YSZ, a typical thermal barrier coating (TBC) for turbine systems, was fabricated under different starting powder conditions and coating parameters by atmospheric plasma spray (APS) coating process. Four different starting powders were prepared by conventional spray dry method with different additive and process parameter conditions. As a result, large- and small-size spherical-type particles and Donut-type particles were obtained. Dense structure of 8YSZ coating was produced when small size spherical-type or Donut-type particles were used. On the other hand, 8YSZ coating with a porous structure was formed from large-size spherical-type particles. Furthermore, a segmented coating structure with vertical cracks was observed after post heat treatment on the surface of dense structured coating by argon plasma flame at an appropriate gun distance and power condition.

Phase formation and microstructural characteristics of ytterbium silicates coatings fabricated by plasma spraying with Ar/He gas compositions for environmental barrier coating applications (플라즈마용사로 증착된 환경차폐코팅 이터븀 실리케이트의 Ar/He 가스 조성에 따른 상형성 및 미세구조 특성)

  • Choi, Jae-Hyeong;Kim, Seongwon;Kim, Ji-Yoo;Moon, Hung Soo
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.376-382
    • /
    • 2022
  • Yb2Si2O7 has a coefficient of thermal expansion similar to that of the base material of SiC and has excellent corrosion resistance in a high-temperature oxidizing atmosphere including water vapor, so it is being studied as one of the materials for environmental barrier coatings (EBCs). In this study, Yb2Si2O7 powder granule is deposited using atmospheric plasma spraying (APS) with different Ar/He ratios. Phase formation and microstructural characteristics are investigated with the coated specimens. In the coating layer, the crystallinity decreased, and the amorphous content increased from an increase in the ratio of Ar. In addition, the various types of particles involved by local volatilization of Si according to the Ar/He ratios were identified.