• Title/Summary/Keyword: Hardening curve

Search Result 137, Processing Time 0.02 seconds

Experimental Studies on the Properties of Epoxy Resin Mortars (에폭시 수지 모르터의 특성에 관한 실험적 연구)

  • 연규석;강신업
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.1
    • /
    • pp.52-72
    • /
    • 1984
  • This study was performed to obtain the basic data which can be applied to the use of epoxy resin mortars. The data was based on the properties of epoxy resin mortars depending upon various mixing ratios to compare those of cement mortar. The resin which was used at this experiment was Epi-Bis type epoxy resin which is extensively being used as concrete structures. In the case of epoxy resin mortar, mixing ratios of resin to fine aggregate were 1: 2, 1: 4, 1: 6, 1: 8, 1:10, 1 :12 and 1:14, but the ratio of cement to fine aggregate in cement mortar was 1 : 2.5. The results obtained are summarized as follows; 1.When the mixing ratio was 1: 6, the highest density was 2.01 g/cm$^3$, being lower than 2.13 g/cm$^3$ of that of cement mortar. 2.According to the water absorption and water permeability test, the watertightness was shown very high at the mixing ratios of 1: 2, 1: 4 and 1: 6. But then the mixing ratio was less than 1 : 6, the watertightness considerably decreased. By this result, it was regarded that optimum mixing ratio of epoxy resin mortar for watertight structures should be richer mixing ratio than 1: 6. 3.The hardening shrinkage was large as the mixing ratio became leaner, but the values were remarkably small as compared with cement mortar. And the influence of dryness and moisture was exerted little at richer mixing ratio than 1: 6, but its effect was obvious at the lean mixing ratio, 1: 8, 1:10,1:12 and 1:14. It was confirmed that the optimum mixing ratio for concrete structures which would be influenced by the repeated dryness and moisture should be rich mixing ratio higher than 1: 6. 4.The compressive, bending and splitting tensile strenghs were observed very high, even the value at the mixing ratio of 1:14 was higher than that of cement mortar. It showed that epoxy resin mortar especially was to have high strength in bending and splitting tensile strength. Also, the initial strength within 24 hours gave rise to high value. Thus it was clear that epoxy resin was rapid hardening material. The multiple regression equations of strength were computed depending on a function of mixing ratios and curing times. 5.The elastic moduli derived from the compressive stress-strain curve were slightly smaller than the value of cement mortar, and the toughness of epoxy resin mortar was larger than that of cement mortar. 6.The impact resistance was strong compared with cement mortar at all mixing ratios. Especially, bending impact strength by the square pillar specimens was higher than the impact resistance of flat specimens or cylinderic specimens. 7.The Brinell hardness was relatively larger than that of cement mortar, but it gradually decreased with the decline of mixing ratio, and Brinell hardness at mixing ratio of 1 :14 was much the same as cement mortar. 8.The abrasion rate of epoxy resin mortar at all mixing ratio, when Losangeles abation testing machine revolved 500 times, was very low. Even mixing ratio of 1 :14 was no more than 31.41%, which was less than critical abrasion rate 40% of coarse aggregate for cement concrete. Consequently, the abrasion rate of epoxy resin mortar was superior to cement mortar, and the relation between abrasion rate and Brinell hardness was highly significant as exponential curve. 9.The highest bond strength of epoxy resin mortar was 12.9 kg/cm$^2$ at the mixing ratio of 1:2. The failure of bonded flat steel specimens occurred on the part of epoxy resin mortar at the mixing ratio of 1: 2 and 1: 4, and that of bonded cement concrete specimens was fond on the part of combained concrete at the mixing ratio of 1 : 2 ,1: 4 and 1: 6. It was confirmed that the optimum mixing ratio for bonding of steel plate, and of cement concrete should be rich mixing ratio above 1 : 4 and 1 : 6 respectively. 10.The variations of color tone by heating began to take place at about 60˚C, and the ultimate change occurred at 120˚C. The compressive, bending and splitting tensile strengths increased with rising temperature up to 80˚ C, but these rapidly decreased when temperature was above 800 C. Accordingly, it was evident that the resistance temperature of epoxy resin mortar was about 80˚C which was generally considered lower than that of the other concrete materials. But it is likely that there is no problem in epoxy resin mortar when used for unnecessary materials of high temperature resistance. The multiple regression equations of strength were computed depending on a function of mixing ratios and heating temperatures. 11.The susceptibility to chemical attack of cement mortar was easily affected by inorganic and organic acid. and that of epoxy resin mortar with mixing ratio of 1: 4 was of great resistance. On the other hand, when mixing ratio was lower than 1 : 8 epoxy resin mortar had very poor resistance, especially being poor resistant to organicacid. Therefore, for the structures requiring chemical resistance optimum mixing of epoxy resin mortar should be rich mixing ratio higher than 1: 4.

  • PDF

The Effect of Aging Treatment on the High Temperature Fatigue Fracture Behavior of Friction Welded Domestic Heat Resisting Steels (SUH3-SUS 303) (마찰용접된 국산내열 강 (SUH3-SUS303 )의 시효열처리가 고온피로강도 및 파괴거동에 미치는 영향에 관한 연구)

  • Lee, Kyu-Yong;Oh, Sae-Kyoo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.17 no.2
    • /
    • pp.93-103
    • /
    • 1981
  • It is well-known that nowadays heat resisting and anti-corrosive materials have been widely used as the components materials of gas turbines, nuclear power plants and engines etc. In the fields of machine production industry. And materials for engine components, like as the exhaust valve of internal combustion engine, have been required to operate under the high temperature range of $700^{\circ}C$-$800^{\circ}C$ and high pressured gas with repeated mechanical load for the high performance of engines. For these components, friction welding for bonding of dissimilar steels can be applied for in order to obtain process shortening, production cost reduction and excellent bonding quality. And age hardening recently has been noticed to the heat resisting materials for further strengthening of high temperature strength, especially high temperature fatigue strength. However, it is difficult to find out any report concerning the effects of age hardening for strengthening high temperature fatigue strength to the Friction welded heat resisting and anti-corrosive materials. In this study the experiment was carried out as the high temperature rotary bending fatigue testing under the condition of $700^{\circ}C$ high temperature to the friction welded domestic heat resisting steels, SUH3-SUS303, which were 10hr., 100hr. aging heat treated at $700^{\circ}C$ after solution treatment 1hr. at $1, 060^{\circ}C$ for the purpose of observing the effects of the high temperature fatigue strength and fatigue fracture behaviors as well as with various mechanical properties of welded joints. The results obtained are summarized as follows: 1) Through mechanical tests and micro-structural examinations, the determined optimum welding conditions, rotating speed 2420 rpm, heating pressure 8kg/mm super(2), upsetting pressure 22kg/mm super(2), the amount of total upset 7mm (heating time 3 sec and upsetting time 2 sec) were satisfied. 2) The solution treated material SUH 3, SUS 303, have the highest inclination gradient on S-N curve due to the high temperature fatigue testing for long time at $700^{\circ}C$. 3) The optimum aging time of friction welded SUH3-SUS 303, has been recognized near the 10hr. at $700^{\circ}C$ after the solution treatment of 1hr. at $1, 060^{\circ}C$. 4) The high temperature fatigue limits of aging treated materials were compared with those of raw material according to the extender of aging time, on 10hr. aging, fatigue limits were increased by SUH 3 75.4%, SUS 303 28.5%, friction welded joints SUH 3-SUS 303 44.2% and 100hr. aging the rates were 64.9%, 30.4% and 36.6% respectively. 5) The fatigue fractures occurred at the side of the base matal SUS303 of the friction welded joints SUH 3-SUS 303 and it is difficult to find out fractures at the friction welding interfaces. 6) The cracking mode of SUS 303, SUH 3-303 is intergranular in any case, but SUH 3 is fractured by transgranular cracking.

  • PDF

Kinetics of Drying Shiitake Mushroom, Lentinus edodes sanryun No. 1 (표고버섯의 열풍건조속도론(熱風乾燥速度論)에 관한 연구(硏究))

  • Cho, Duk-Bong;Kim, Dong-Pil;Choi, Choon-Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.10 no.1
    • /
    • pp.53-60
    • /
    • 1981
  • Dehydration phenomena has been studied for the shiitake mushroom Lentinus edodes sanryun No.1, through which examine the effect of temperature and air velocity and derivation of its kinetics. Temperature effect for the dehydration rate constant were examined under the constant air velocity (1.5m/sec) with the variation of temperature from $40^{\circ}C$ to $55^{\circ}C$. Water content were reduced exponentially with the course of time and calculated dehydration rate constant values varies with temperature with an Arrhenius-type relationship, which had been expected in the chemical reaction kinetics. Influence of air velocity for the dehydration rate constant under the constant temperature $(45^{\circ}C)$ showed interesting results. For the range 1.0m/sec to 2.0m/sec, dehydration rate constant values are increased with the air velocity, but for the 2.0 to 3.1m/sec, dehydration rate constant values are decreased which were caused by case hardening. One of the selected conditions in the optimal dehydration range, temperature $50^{\circ}C$, air velocity 2m/see, and its measured humidity 38-41%, mathematical model of dehydration curve and dehydration rate equations were developed and the resulting kinetic models were X=6.94 $e^{-0.345t}$ and dx/dt = -2.39 $e^{-0.345t}$

  • PDF

Estimation of Compressive Stiffness of Polyurethane Rubber Springs and Its Application (폴리우레탄 고무 스프링의 압축 강성도 추정 및 적용)

  • Choi, Eunsoo;Park, Seungjin;Woo, Daeseung
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.3
    • /
    • pp.229-236
    • /
    • 2017
  • The purpose of this study is to investigate the behavior and characteristics of rubber springs and calculate the compressive stiffness by performing dynamic compression tests of rubber springs. In order to carry out the dynamic compression test of rubber spring, total 9 rubber springs were tailored by calculating the shape factor of L80-D55, L90-D58, and L100-D60, and used for the experiments. Experiments were performed by controlling the compression according to the length of the rubber spring, and the compression was increased in the order of 5%, 10%, 15%, 20% and 25% of the strain. From the experimental results, the force-strain curves were obtained and it was confirmed that strength decrease and strength increase phenomenon occurred as the strain increased. In addition, it was confirmed that the decrease of stiffness and the increase of stiffness were clearly observed according to the size and diameter of the rubber spring, and the effective compression stiffness was estimated using the slope of the force-strain curve. By using the effective compressive stiffness, design values that can be used in actual design were presented.

An Experimental Study on the Mechanical Properties of HPFRCCs Reinforced with the Micro and Macro Fibers (마이크로 및 매크로 섬유에 의해 보강된 고인성 시멘트 복합재료의 역학적 특성에 관한 실험적 연구)

  • Kim Moo-Han;Kim Jae-Hwan;Kim Yong-Ro;Kim Young-Duck
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.263-271
    • /
    • 2005
  • HPFRCC(High Performance Fiber Reinforced Cementitious Composite) is a class of FRCCs(Fiber Reinforced Cementitious Composites) that exhibit multiple cracking. Multiple cracking leads to improvement in properties such as ductility, toughness, fracture energy, strain hardening, strain capacity, and deformation capacity under tension, compression, and bending. These improved properties of HPFRCCs have triggered unique and versatile structural applications, including damage reduction, damage tolerance, energy absorption, crack distribution, deformation compatibility, and delamination resistance. These mechanical properties of HPFRCCs become different from the kinds and shapes of used fiber, and it is known that the effective size of fiber in macro crack is different from that in micro crack. This paper reports an experimental findings on the mechanical properties of HPFRCCs reinforced with the micro fiber(PP50, PVA100 and PVA200) and macro fiber(PVA660, SF500). Uniaxial compressive tests and three point bending tests are carried out in order to compare with the mechanical properties of HPFRCCs reinforced with micro fibers or hybrid fibers such as compressive strength, ultimate bending stress, toughness, deformation capacity and crack pattern under bending, etc.,

Evaluation of Radiation Dose for Dual Energy CBCT Using Multi-Grid Device (에너지 변조 필터를 이용한 이중 에너지 콘빔 CT의 선량 평가)

  • Ju, Eun Bin;Ahn, So Hyun;Cho, Sam Ju;Keum, Ki Chang;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.27 no.1
    • /
    • pp.31-36
    • /
    • 2016
  • The paper discusses radiation dose of dual energy CT on which copper modulation layer, is mounted in order to improve diagnostic performance of the dual energy CT. The radiation dose is estimated using MCNPX and its results are compared with that of the conventional dual energy CT system. CT X-ray spectra of 80 and 120 kVp, which are usually used for thorax, abdominal, head, and neck CT scans, were generated by the SPEC78 code and were used for the source specification 'SDEF' card for MCNPX dose modeling. The copper modulation layer was located 20 cm away from a source covering half of the X-ray window. The radiation dose was measured as changing its thickness from 0.5 to 2.0 mm at intervals of 0.5 mm. Since the MCNPX tally provides only normalized values to a single particle, the dose conversion coefficients of F6 tally for the modulation layer-based dual energy CBCT should be calculated for matching the modeling results into the actual dose. The dose conversion coefficient is $7.2*10^4cGy/output$ that is obtained from dose calibration curve between F6 tally and experimental results in which GAFCHORMIC EBT3 films were exposed by an already known source. Consequently, the dose of the modulation layer-based dual energy cone beam CT is 33~40% less than that of the single energy CT system. On the basis of the results, it is considered that scattered dose produced by the copper modulation layer is very small. It shows that the modulation layer-based dual energy CBCT system can effectively reduce radiation dose, which is the major disadvantage of established dual energy CT.

Dosimetric Characteristics of Dual Photon Energy Using Independent Collimator Jaws (고에너지 선형가속기의 Independent Collimator를 이용한 비대칭 방사선 조사시 방사선량 결정에 미치는 요인에 관한 연구)

  • Kim Jeung-kee;Choi Young-Min;Lee Hyung-Sik;Hur Won-Joo
    • Radiation Oncology Journal
    • /
    • v.14 no.3
    • /
    • pp.237-244
    • /
    • 1996
  • Purpose : The accurate dosimetry of independent collimator equipped for 6MV and 15MV X-ray beam was investigated to search for the optimal correction factor. Materials and Methods : The field size factors, beam quality and dose distribution were measured by using 6MV, 15MV X-ray Field size factors were measured from $3{\times}3cm^2$ to $35{\times}35cm^2$ by using 0.6cc ion chamber (NE 2571) at Dmax. Beam qualities were measured at different field sizes, off-axis distances and depths. Isodose distributions at different off-axis distance using $10\times10cm^2$ field were also investigated and compared with symmetric field. Result: 1) Relative field size factors was different along lateral distance with maximum changes in $3.1\%$ for 6MV and $5\%$ for 15MV. But the field size factors of asymmetric fields were identical to the modified central-axis values in symmetric field, which corrected by off-axis ratio at Dmax. 2) The HVL and PDD was decreased by increasing off-axis distance. PDD was also decreased by increasing depth For field size more than $5{\times}cm^2$ and depth less than 15cm, PDD of asymmetric field differs from that of symmetric one ($0.5\~2\%$ for 6MV and $0.4\~1.4\%$ for 15MV). 3) The measured isodose curves demonstrate divergence effects and reduced doses adjacent to the edge close to the flattening filter center was also observed. Conclusion . When asymmetric collimator is used, calculation of MU must be corrected with off-axis and PDD with a caution of underdose in central axis.

  • PDF