• Title/Summary/Keyword: Hardening Effects

Search Result 458, Processing Time 0.03 seconds

The Characteristics of Ductile Cast Iron Heat-treated by $CO_2$Laser (구상흑연주철의 $CO_2$레이저 표면경화 특성)

  • 정원기;전병철;김재도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.998-1002
    • /
    • 1997
  • This study has been performed to predict beam absorption with analysis of temperature field by using a FEM in co /sab 2/ laser hardening and to invesrigate into some effects of power density and travel speed of laser beam on the microstructure and hardness of ductile cast iron treated by laser surface hardening technique. Optical micrograph has shown that large martensite and small amount of retained austenite appear in inside hardened zone. Hardness measurement has revealed that the range of maximum hardness value is Hv=415 .+-. 10. The power density increases and the travel speed decreases, the depth of hardened zone increases due to increase of input power density.

  • PDF

Low Cycle Fatigue Behaviors of Type 316 Stainless Steel in $310^{\circ}C$ Water Environment

  • Kim, Byoung-Koo;Cho, Hyun-Chul;Kim, In-Sup;Jang, Chang-Heui;Jung, Dae-Yul;Byeon, Seong-Cheol
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2005.05a
    • /
    • pp.467-468
    • /
    • 2005
  • Low cycle fatigue test results of Type 316 stainless steel in $310^{\circ}C$ water environment can be summarized as follows. 1. Cyclic stress response of Type 316 stainless steel shows negative strain rate sensitivity, primary hardening and secondary hardening. 2. Fatigue life in $310^{\circ}C$ water environment was shorter than fatigue life in room temperature air environment. This was because of water environment and temperature effects.

  • PDF

Changes of Low Cycle Fatigue Behavior of AI-Mg-Si Alloy with Severe Plastic Deformation and Heat Treatment (강소성 가공 및 열처리에 의한 Al-Mg-Si합금의 저주기 피로특성변화)

  • Kim, W.H.;Kwun, S.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.4
    • /
    • pp.217-222
    • /
    • 2009
  • The effects of severe plastic deformation by equal channel angular pressing (ECAP) and subsequent heat treatment on the low cycle fatigue behaviors of Al-Mg-Si alloy were investigated. The specimens which were peak aged at $175^{\circ}C$ after solution treatment showed cyclic hardening at all strain amplitudes, while the specimens ECAPed after solution treatment showed cyclic softening at all strain amplitudes during fatigue. The specimens aged at $100^{\circ}C$ after ECAP showed slight cyclic hardening. Various changes of cyclic fatigue behavior after severe plastic deformation and/or heat treatment were discussed in terms of the microstructural changes and precipitation conditions.

Elastoplastic nonlinear behavior of planar steel gabled frame

  • Moghaddam, Sina Heyrani;Masoodi, Amir R.
    • Advances in Computational Design
    • /
    • v.4 no.4
    • /
    • pp.397-413
    • /
    • 2019
  • In this paper, static nonlinear analysis of gable frame is performed using OpenSees software. Both geometric and material nonlinearities are considered in analyses. To consider large displacements, co-rotational coordinate transformation is used in software. The effects of symmetric and asymmetric support conditions including clamped and simple supports are studied. On the other hand, the material nonlinearity is reflected on analyses using Giuffre-Menegotto-Pinto steel material. Note that strain hardening characteristics are also considered in this model. Moreover, I-shaped cross-section is assumed for all members. The results are provided for different geometry properties of gable frame including shallow and deep inclined roof. It should be added that buckling and post-buckling behaviors of gable frame are investigated using related equilibrium paths. A comparison study is also implemented on the responses of buckling loads obtained for different support and geometry conditions. To trace snap-through paths completely, a displacement control method entitled arc-length is utilized. Findings show the capability of proposed model in nonlinear analysis of gable frames.

Effects of Fe and Si Additions on the Ageing Behaviors for High Strength Al-Cu-Mn-Ti-Zr-Cd Casting Alloys (Fe과 Si의 첨가가 주조용 고강도 Al-Cu-Mn-Ti-Zr-Cd 합금의 시효경화거동에 미치는 영향)

  • Kim, Chul-Hyo;Lee, Jeong-Moo;Kim, Kyung-Hyun;Kim, In-Bae
    • Journal of Korea Foundry Society
    • /
    • v.24 no.1
    • /
    • pp.45-51
    • /
    • 2004
  • Fe and Si are common impurity elements in the aluminum alloys. In this investigation, the effects of the addition of Fe and Si on the age-hardening behaviors of the Al-Cu-Mn-Ti-Zr-Cd casting alloys were examined through hardness measurements, calorimetric techniques and observation of the transmission electron microscopy. The addition of Fe depresses the formation of GPII and ${\theta}'$, and thus retards the peak aging time and reduces the peak hardness of the Al-Cu-Mn-Ti-Zr-Cd alloys. On the contrary, the addition of Si accelerates the formation of GPII and ${\theta}'$ and thus accelerates age-hardening behaviors of the Al-Cu-Mn-Ti-Zr-Cd alloys.

The piling-up/sinking-in response of elasto-plastic materials in nano-indentation using sharp indenter (나노 인덴테이션 시험에서의 탄소성 재료의 파일업/싱크인 특성)

  • Kim, Byung-Min;Lee, Chan-Joo;Lee, Jung-Min;Lee, Sang-Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1367-1372
    • /
    • 2007
  • Over the past decade, many computational researches have been performed to investigate quantitative relationships between load-displacement and material properties. But piling-up which causes errors to estimate mechanical material properties remains the most significant unresolved issue in nano-indentation test. This study has estimated quantitative aspects of the effects of material properties, especially work hardening exponent, on piling up/sinking in response of various materials. Using FE Analysis, piling up/sinking in response when material is indented by sharp indenter is investigated to evaluate the effects of material properties. From the FE analysis result, quantitative relationships between piling up/sinking in height and material properties is assessed using dimensional analysis which is used to define scaling variables and universal functions. And nano-indentaion test is performed to verify this relation on various materials. From the result of comparison with prediction from dimensional function and experiment, the work hardening exponent was found to have greater influence on the piling up/sinking in height during the nano-indentation than other material properties, such as elastic modulus and yield stress.

  • PDF

Effects of Clearance on the Formation of Adiabatic Shear Band in Stepped Specimen (계단시편의 간극이 단열전단밴드의 형성에 미치는 영향)

  • Yoo, Y.H.;Jeon, G.Y.;Chung, D.T.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1700-1709
    • /
    • 1993
  • The stepped specimen which is subjected to step loading is modeled to study the initiation and growth of adiabatic shear band using explicit time integration finite element method. Three different clearance sizes are tested. The material model for the stepped specimen includes effects of strain hardening, strain rate hardening and thermal softening. It is found that the material inside the fully grown adiabatic shear band experiences three phase of deformation, (1) homogeneous deformation phase, (2) initiation/incubation phase, and (3) fast growth phase. The second phase of deformation is initiated after sudden shear stress drop which occurs at the same time regardless of the clearance size. The incubation time prior to fast growth phase increases, as the clearance size of the stepped specimen increases. Whereas, after incubation period, the growth rate of the adiabatic shear band decreases, as the clearance size decreases. It is also found that two adiabatic shear band may develop instead of one for the smaller clearance size.

Effect of Ag Addition on the Mechanical Properties of 7050 Al Alloy (Ag 첨가가 7050 Al합금의 기계적 성질에 미치는 영향)

  • Kwak, S.H.;Chung, Y.H.;Kwun, S.I.;Cho, K.K.;Shin, M.C.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.2
    • /
    • pp.129-135
    • /
    • 1999
  • The effects of Ag addition on the microstructures and mechanical properties of 7050 Al alloy were investigated. Various homogenizing and aging treatments were carried out to analyze the controversial effects of Ag in 7050 Al alloy. Transmission electron microscopy(TEM) was used for microstructural analysis. The hardening precipitates(${\eta}^{\prime}$) become finer with Ag addition. It suggests that Ag promotes easier nucleation of ${\eta}{\prime}$. The strength of overaged Ag bearing alloys are higher than that of Ag free alloy. Hardening precipitates(${\eta}^{\prime}$) in Ag bearing alloys are smaller than that of Ag free alloys, because the growth rate of ${\eta}^{\prime}$ during overaging stage is lower in Ag bearing alloys.

  • PDF

A Case Study of Applicability of Machines of Pulse Powered Underreamed Anchors (펄스방전 확공형 앵커용 시공 장비의 적용성 검토)

  • Kang, Kum-Sik;Kim, Jae-Hyung;Cho, Gyu-Yeon;Kim, Tae-Hoon;Kim, Sun-Ju
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1100-1106
    • /
    • 2009
  • This study intends to develop a pulse discharge device to strengthen the pushing power by expanding the cavity of the anchor settlement to form a spheric root for the purpose of constructing the economical and stable anchor. and, a series of field test were carried out in order to check applicability of machines of pulse powered underreamed anchors. Through the experiments, the electrical characteristics of the pulse power equipment had been identified it and the dynamic pressure generated from the subsequent change had been measured. Here, the measured dynamic pressure is the cavity expansion pressure to impact on the ground around the anchor settlement. Since this pressure has effects of cavity expansion and bored surface hardening with dynamic hardening effects on the anchor settlement, it is expected that it will largely contribute the increase of pushing power with a strong frictional resistance.

  • PDF

STRAIN LOCALIZATION IN IRRADIATED MATERIALS

  • Byun, Thaksang;Hashimoto, Naoyuki
    • Nuclear Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.619-638
    • /
    • 2006
  • Low temperature irradiation can significantly harden metallic materials and often lead to strain localization and ductility loss in deformation. This paper provides a review on the radiation effects on the deformation of metallic materials, focusing on microscopic and macroscopic strain localization phenomena. The types of microscopic strain localization often observed in irradiated materials are dislocation channeling and deformation twinning, in which dislocation glides are evenly distributed and well confined in the narrow bands, usually a fraction of a micron wide. Dislocation channeling is a common strain localization mechanism observed virtually in all irradiated metallic materials with ductility, while deformation twinning is an alternative localization mechanism occurring only in low stacking fault energy(SFE) materials. In some high stacking fault energy materials where cross slip is easy, curved and widening channels can be formed depending on dose and stress state. Irradiation also prompts macroscopic strain localization (or plastic instability). It is shown that the plastic instability stress and true fracture stress are nearly independent of irradiation dose if there is no radiation-induced phase change or embrittlement. A newly proposed plastic Instability criterion is that the metals after irradiation show necking at yield when the yield stress exceeds the dose-independent plastic instability stress. There is no evident relationship between the microscopic and macroscopic strain localizations; which is explained by the long-range back-stress hardening. It is proposed that the microscopic strain localization is a generalized phenomenon occurring at high stress.