• Title/Summary/Keyword: Hardening

Search Result 2,725, Processing Time 0.032 seconds

Characteristics of early strength development of blended cement according to the addition of C-S-H based Hardening acceleration (C-S-H계 조강제 첨가에 따른 혼합시멘트의 조기 강도 발현 특성)

  • An, Tae-Yun;Ra, Jeong-Min;Park, Jun-Hyung;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.127-128
    • /
    • 2022
  • In order to realize carbon neutrality in the international society, research on supplementary cementitious materials(SCMs) has been actively conducted as a way to reduce carbon dioxide emissions in the cement industry. However, the use of SCMs causes problems of initial hydration delay and strength reduction due to the reduction of tricalcium silicate(C3S) in the cement clinker. Therefore, in this study, the initial hydration and basic characteristics of cement mortar were confirmed by adding a C-S-H based hardening acceleration to blended cement mixed with Portland cement, blast furnace slag, fly ash, and limestone power. As a result of the heat of hydration and compressive strength test, it was confirmed that when hardening acceleration was added, the initial reactivity was high, so the heat of hydration was promoted, and the initial strength was increased. It is considered to be due to C-S-H seeding effect. Therefore, it is judged that the use of C-S-H based hardening acceleration can supplement the problem of initial hydration delay of blended cement in Korea.

  • PDF

A Study on the Influence of Induction Coil Movement Speed and Frequency on Induction Hardening of SCM440 Steel (SCM440 강의 유도 경화에 미치는 유도코일 이동속도 및 주파수의 영향에 관한 연구)

  • Ki-Woo Nam;Ki-Hang Shin;Byoung-Chul Choi;Gum-Hwa Lee;Jong-Kyu Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.813-823
    • /
    • 2023
  • In this study, microstructure, hardening layer hardness, and case depth were evaluated after induction hardening(IH) of base metal specimen(BM) treated with annealing and quenching-tempering specimen(QT) treated with quenching and tempering. The microstructure after IH was significantly influenced by the microstructure before IH and the induction coil heating movement speed, but the effect of the induction frequency was very small. The hardness of the hardened layer at an induction coil heating movement speed of 15 mm/s or less was more influenced by the microstructure before IH than the induction coil travel speed and induction frequency. The induction coil travel speed has the significantly effect on the case depth, the induction frequency has effect and the microstructure before IH has a small effect.

Study on Torsional Strength of Induction-Hardened Axle Shaft (고주파 열처리를 고려한 액슬 축 비틀림 거동 연구)

  • Kang, Dae-Hyun;Lee, Bum-Jae;Yun, Chang-Bae;Kim, Kang-Wuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.645-649
    • /
    • 2010
  • Induction hardening has been used to improve the torsional strength and characteristics of wear for axle shaft that is used to transmit driving torque from the differential to the wheel in automobiles. After the rapid heating and cooling processes of induction hardening are carried out, the shaft has residual stress and material properties change; this affects the allowable transmitted torque. The objective of this study is to predict the distribution of residual stress and estimate the torsional strength of induction-hardened axle shafts with residual stress. In this study, the finite element method is used to study the thermomechanical behavior of the material, and the results are compared with experimental results. The results indicate that the torsional strength of the axle shaft depends on the surface hardening depth and distribution of residual stress.

Characteristics of Soil Parameter for Lade's Single Work-Hardening Constitutive Model with Relative Density of Bottom ash (석탄회의 상대밀도에 따른 Lade 단일항복면 구성모델의 토질매개변수 특성)

  • Kim, Chan-Kee;Lee, Jong-Cheon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.87-98
    • /
    • 2013
  • This study was performed a series of the isotropic compression-expansion tests and the drained triaxial tests with various the relative densities 40%, 60%, 80% and 95% for bottom ash. Using the tests results the characteristic of the parameters of Lade's single hardening constitutive model were investigated. The soil parameters Kur and n representing elastic behavior are not much affected by the change of the relative density. The other parameters such as failure criterion(m, ${\eta}_1$), hardening function(c, p) and plastic potential(${\psi}_2$, ${\mu}$) are in a positive linear relationship with the relative density. Since the soil parameters h and ${\alpha}$ representing yield function do not change much to the change of relative density and also closely related to failure criterion, they can be replaced by failure criterion ${\eta}_1$. We also observed that predicted values from the Lade's single hardening constitutive model were well consistent with the observed data.

Correlation between Overload Retardation and Hardening Exponent (과부하로 인한 균열지연과 변형경화지수와의 상호관계)

  • Sang-Chul,Kim;Jin-Man,Jeong;Moon-Sik,Han
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.2
    • /
    • pp.41-48
    • /
    • 1989
  • This paper investigates the relationship between strain hardening exponents(n) of various marine materials and fatigue crack retardation effect after applying single overload. Using the four different sheet materials, following results are obtained. (1) The fatigue crack propagation rate after applying single overload was retarded and the effects of this retardation were closely related to the strain hardening exponent. (2) The larger the strain hardening exponents were, the more were the fatigue crack retardation effects after applying single overload. (3) The considerable crack closure with the applying of a overload was observed in matrals with large strain hardening exponent. When n is smaller than 0.1, the fatigue crack retardation effects are negligible. On the contrary, when n is larger than 0.2 the fatigue crack retardation effects are significant.

  • PDF

Durability of Ultrarapid-Hardening Polymer-Modified Mortar Using Redispersible Polymer Powder (재유화형 분말수지 혼입 초속경 폴리머 시멘트 모르타르의 내구성)

  • 이윤수;주명기;연규석;정인수
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.660-667
    • /
    • 2002
  • The effects of polymer-cement ratio and antifoamer content on the durability of ultrarapid-hardening polymer-modified mortars using redispersible polymer powder are examined. As a result, regardless of the antifoamer content, the setting time of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder tend to delay with increasing polymer-cement ratio. The water absorption and chloride ion penetration depth of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and antifoamer content. The resistance of freezing and thawing and chemicals improvement is attributed to the improved bond between cement hydrates and aggregates because of the incorporation of redispersible polymer powder

다양한 온도의 Age-hardening에 따른 14K Yellow Gold의 경도변화

  • Yun, Don-Gyu;Seo, Jin-Gyo;Park, Jong-Wan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.38.1-38.1
    • /
    • 2011
  • Yellow gold는 아름다운 광택과 손쉬운 가공성의 장점 때문에 장신구를 비롯한 다양한 분야에서 그 활용 가치가 매우 높다. 본 연구에서는 yellow gold의 hardness 강화 및 품질향상을 위하여 다양한 열처리 조건 별 기계적 특성 변화를 비교 관찰 하였다. 열처리 전 yellow gold alloy의 구성성분을 조사하기 위하여 EPMA와 ICP-MS를 사용하여 정성분석 및 정량분석 결과를 수치화 하였다. 총 44개의 14K yellow gold를 사용하여 $750^{\circ}C$, 30 min 의 조건에서 solid solution treatment 후 $200{\sim}350^{\circ}C$ 온도 범위에서 $50^{\circ}C$ 간격으로 age-hardening을 실시하였다. 또한 열처리 전과 후 grain 들의 배열 및 size 변화를 관찰하기 위해 식각을 실시하였다. 식각된 시료는 optical microscope (OM)을 통해 각 열처리 조건에 따라 전 후 변화를 관찰 하였다. 열처리 전 14K yellow gold의 hardness의 평균값은 120.6 Hv를 나타내었다. Solid solution treatment 후 hardness는 95.7 Hv로 평균값이 감소하였고, age-hardening 후에는 14K yellow gold는 $260^{\circ}C$에서 159.8 Hv, $270^{\circ}C$에서 170.2 Hv로 열처리 전에 비해 약 41% 증가된 결과를 나타내었다. 하지만 $270^{\circ}C$ 부터는 over-aging 현상을 나타내었다. OM 분석 결과 열처리 전 불균일했던 grain들의 배열이 solid solution treatment 및 quenching 후 다소 균일해 짐을 확인할 수 있었고, grain size 또한 열처리 전에 비해 증가함을 알 수 있었다. Solid solution treatment 후 모든 시료의 hardness 값이 전반적으로 감소하였다가 age-hardening을 통해 grain들의 배열이 점차 안정화 되면서 hardness가 증가 하였고, over-aging 구간에서는 급격히 감소하는 경향을 나타내었다. 이 결과로 우리는 14K yellow gold에 대한 age-hardening 최적조건을 도출 하였고, 각 열처리 조건 별 grain 배열 상태의 변화를 관찰 할 수 있었다.

  • PDF

An Optimal Frequency Condition for An Induction Hardening for An Axle Shaft using Thermal-Electromagnetic Coupled Analysis (열-전자기 연성해석을 이용한 차축에 대한 최적의 고주파 열처리 주파수 조건에 대한 연구)

  • Choi, Jin Kyu;Nam, Kwang Sik;Kim, Jae Ki;Choi, Ho Min;Lee, Seok Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.2
    • /
    • pp.207-212
    • /
    • 2016
  • High-frequency induction hardening (HFIH) is used in many industries and has a number of advantages, including reliability and repeatability. It is a non-contact method of providing energy-efficient heat in the minimum amount of time without using a flame. Recently, HFIH has been actively studied using the finite-element method (FEM), however, these studies only focused on the accuracy of the analysis. In this paper, we analyzed HFIH by using a variable frequency based on the conditions of the same shape and input power then comparing the analysis results to experimental results. The analysis and experimental results indicate that the hardening depths are approximately the same using the optimal frequency of 3kHz.

An Experimental Study for Strength Improvement of Soft Ground using Hardening Agent and Silicate Mineral Power (수용성 고화재와 규산염광물 결합재를 활용한 지반개량재의 실험적 연구)

  • Kim, Sung-Wook;Choi, Eun-Kyeong;Cho, Jinwoo;Lee, JuHyung;Lee, Kyu-Hwan
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.8-15
    • /
    • 2015
  • The demand for environmental consideration is on the increase in civil engineering. This study focuses on the development of technology to reduce the use of carbonate cement and improve its performance by using a silicate mineral and hardening agents, and presents the test results for the demonstrative evaluation of the properties of the raw material. Highly active feldspar was used as a binder to augment the bonding of the carbonate cement, and their change in strength was observed after test piece construction with the addition of soluble hardening agent. The uniaxial compression strength of the test piece of the general Portland cement with the addition of 0.5% soluble hardening agent, showed an increase by 33% and that of the test piece of cement with the addition of 70% substituted with feldspar increased by 28%. The strength of viscous soil; classified as soft ground, showed an increase of a maximum of 1.7 times when it was mixed with cement and solidifier depending on the curing period. These tests confirmed that a soluble solidifier is effective for improving the strength of a cement binder and that the highly active feldspar can be used as a binder.

Cyclic Hardening and Degradation Effects on Site Response during an Earthquake (지진시 지반의 반복경화/연화 현상에 의한 부지응답 특성 영향 연구)

  • Lee, Jin-Sun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.6
    • /
    • pp.65-71
    • /
    • 2008
  • A one-dimensional site response analysis program (KODSAP) was developed using cyclic soil behavior model by using the modified parallel IWAN model. The model is able to predict the cyclic hardening and degradation of soil through the adjustment of the internal slip stresses of its elements beyond the cyclic threshold, and satisfies Bauschinger's effect and the Masing rule in terms of its own behavior characteristics. The program (KODSAP) used the direct integration method in the time domain. The elasticity of the base rock was considered as a viscous damper boundary condition. The effects of cyclic hardening or degradation of soil on site response analysis were evaluated through parametric studies. Three types of analyses were performed to compare the effect of analysis and cyclic parameter on site response. The first type was equivalent linear analysis, the second was nonlinear analysis, and a third was nonlinear analysis using the cyclic hardening or degradation model.