• Title/Summary/Keyword: Hardened

Search Result 1,265, Processing Time 0.02 seconds

Motion Analysis of Scissors Type Bucket and Schemes for Improving Ore Scooping Performance (가위형버킷의 운동해석 및 원료 불출능력 향상 방안)

  • Park, Sang-Deok;Kang, Min-Sung;Won, Dae-Heui;Kim, Tae-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1886-1896
    • /
    • 2004
  • Various types of buckets are used as unloading facilities for raw material at unloading wharfs. Scissors type buckets, among them, has been being used widely because of their short cycle time and structural simplicity. However, the scooping capacity, especially for hardened remainder ore, of some buckets are unsatisfactory because of poor design concept of the buckets. In this study, the effects of the design parameters on the scooping performance of the buckets are investigated under kinematic and dynamic analysis. Further, the schemes and design guidelines for designing new scissors type buckets are also presented to improve ore scooping capacity for hardened remainder ore.

A Study on SCr420HB Helical Gear Deformative Simulation by Heat Treatment Quenching Method (열처리 냉각방식 변화에 따른 SCr420HB 헬리컬 기어 시뮬레이션 적용에 관한 연구)

  • Byun, J.H.;Byun, S.D.;Yi, C.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.1
    • /
    • pp.24-31
    • /
    • 2015
  • In this study, a simulation was used to derive an optimal process of heat treatment with carburizing, and compared the derived result with SCr420HB helical gear in heat treatment with carburized quenching process about a change of the quenching method. The optimal carburizing process time is derived by the simulation with the theoretical time. The process has been performed by oil quenching and salt quenching method. Through the comparison of the results from the simulation(Hardness, effective case depth hardened by carburizing treatment and deformation) and the actual process, analyzed the error value of each quenching. And it verified the applicability of the simulation.

An Experimental Study on The Application of Construction of Recycled Aggregate Concrete (part2, in the hardened concrete) (재생골재 콘크리트 구조체 적용성에 관한 실험적 연구(제2보, 경화 콘크리트의 성상을 중심으로))

  • 김진만;류광우;남상일;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.12-15
    • /
    • 1993
  • Critical shortage of natural aggregate for production of concrete is developing in many urban area. At the same time increasing quantities of demolished concrete form deteriorated and obsolete structures are generated as a waste material in the same areas. The reuse of a waste concrete may settle the problems of environmental pollution and shortage of adquate aggregate, Therefore, this study is to reuse a waste concrete as aggregate for concrete, It is the purpose of this present study to investigate and analyze how the addition rates of superplasticizer and curing condition affect the properties of fresh and hardened recycled aggregate concrete comparing with those of ordinary concrete and crushed stone concrete.

  • PDF

An Experimental Study on the Reduction of Drying and Autogenous Shrinkage of High Performance Concrete Using CSA Expansive Additives and Inorganic Admixtures (CSA계 팽창재 및 무기질 환화재를 이용한 고성능 콘크리트의 건조수축 및 자기수축 저감에 관한 실험 연구)

  • 홍상희;전병채;송명신;한천구;반호용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.386-391
    • /
    • 1998
  • Recently, high performance concrete developed has a good quality at fresh and hardened state, but high binder contents results in spending much money on manufacturing and many cracks by drying and autogenous shrinkage. Therefore, in this paper, not only prevention of cracks caused by drying and autogenous shrinkage, but improvement of quality and accmplishment of economy by applying F.A(fly ash), S.F(silica fume) and CSA(calcium sulfa aluminate) expansive additives as an inorganic admixtures in W/B 35% are discussed. According to the experimental results, when 5% of CSA Expansive additives and 15:5 (F.A:S.F)are replaced at unit cement content, high performance concrete with both good compensation of drying and autogenous shrinkage at hardened state is accomplished.

  • PDF

Nondestructive Measurement of Case Hardening Depth with Eddy Current Method (와전류법을 이용한 강의 표면경화층 깊이의 비파괴적 측정)

  • Lee, K.W.;Han, S.Y.;Park, U.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.11 no.1
    • /
    • pp.38-43
    • /
    • 1991
  • The relationship between eddy current response and case hardening depth has been studied on SM40C(KS D-3752) and SCM440(KS D-3711) steels which were surface hardened by high frequency induction hardening. The results obtained in this study were as follows ; 1) Case hardening depth was successfully measured by observing the eddy current impedance changes of each steel. The impedance decreased linearly with increasing case hardening depth. 2) For large impedance gradient between the hardened surface and core metal, the eddy current response was more sensitive to case hardening depth than for low impedance gradient.

  • PDF

Comparative Study on a Special Low-Porosity Portland Cement (저 기공성 특수 포틀랜드 시멘트에 대한 비교연구)

  • 장복기
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.5
    • /
    • pp.532-540
    • /
    • 1988
  • Even the finest cement as having a specific surface area of 6.000~8.500$\textrm{cm}^2$/g (Blaine) is to convert into low-porosity hardened cement paste by the use of appropriate plasticizer. In this study, tests were carried out on such a special cement mix(fineness of 6.000$\textrm{cm}^2$/g, Ca-lignosulfonate plus k2CO3 as plasticizer and W/C=0.25) in comparison with ordinary Portland cement. Owing mainly to the high fineness of the cement powder and the low water-to-cement ratio, the hardened low-porosity cement paste showed a very tight microstructure, the pore texture of which consisted of micropores and wide pores only of small radii. The consequence of such mix was hence that the low-porosity special cement had excellent properties of early-high and very high strengths as compared to ordinary Portland cement. Its volume change when dried in the air or re-wetted, exhibited superor behaviour as well.

  • PDF

A Fundamental Study on the Effect of Anti-Freezing Agent of Concrete (콘크리트용 내한제의 효과에 관한 기초적 연구)

  • 윤기원;조병영;한천구;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.163-168
    • /
    • 1994
  • If the concrete is exposed below freezing point of the outer temperature before hardened, the quality of the concrete will be lowered after hardened. Anti-freezing agent which doesn't corrode the steel bar and doesn't generate the alkali-aggregate reaction by noncholride recently developed in Japan and Northern Europe. But the effects of these agents are rarely known. Therefore, this study is desigend for analyzing the freezing properties at the condition of solution of solution and cement paste. And this study aims to present the reference data for practical use of the concrete works using anti-freezing agent.

  • PDF

Residual Stress Distribution of Laser Hardened SCM440 for Diesel Engine Piston (디젤엔진 피스톤용 SCM440의 레이저 표면경화부의 잔류응력)

  • Lee, D.S.;Yoo, W.J.;Kim, J.D.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.3
    • /
    • pp.182-186
    • /
    • 1995
  • SCM440, which is widely used as the diesel engine piston of vessel, has been hardened by a $CO_2$ laser with the wavelength of $10.6{\mu}m$. Laser hardening experiment has been carried out for the condition of a laser power 1kW, the travel speed between 0.4 and 1.5m/min, and a rectangular-Gaussian beam. Residual stress has been measured by using middle point technique of half value width of X-ray diffraction method. It was found that the compressive residual stress with the range between 400 and 600MHz has distributed in the laser hardening zones and the tensile residual stress between 100 and 200MHz has distributed in the boundary of hardening zones.

  • PDF

A Study on the Waterproof Properties of Cement Mortar with the Addition Rate of the Inorganic Admixture and Zinc Stearate (무기질 혼화재 및 금속비누의 혼입률 변화에 따른 시멘트 모르터의 방수 특성에 관한 연구)

  • Choi, Hoon;Jiang, Yi-Long;Han, Min-Cheol;Ryu, Hyun-Ki;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.139-144
    • /
    • 1998
  • This study is intended to devolop the self waterproof agents for high performance concrete by analyzing the properties of fresh and hardened mortar with various addition ratios of the inorganic admixture and zinc stearate. As the results of the test, the flow and air content increase with the addition of expansive additives. When the replacement rate of silica fume increases, the flow decreases for the increased viscidity. And the flow and sir content decrease with the addition of zinc stearate. At hardened state, the compressive strength, tensile strength and flexual strength decrease with the addition of expansive additives and zinc stearate. With the increase of silica fume's replacement, they show a little decrease at early age and then increase gradually. Also, absorption and permeability show a steep decrease when zinc stearate is added, and a slack decrease with the replacement of silica fume.

  • PDF

A Study on the Behavior of Chloride Ion in Hardened Cement Paste at Defferent Stages of Curing (재령에 따른 시멘트 경화체내 염화물 이온의 거동에 관한 연구)

  • 문소현;소승영;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.185-190
    • /
    • 1998
  • Corrosion of steel reinforcement is the most significant factor of deterioration in reinforced concrete structures. Chloride ion is considered one of the most common culprits on the corrosion of steels in concrete. The main objective of this study is understanding behavior of chloride ion in hardened cement pastes at different stages of curing. Cement pastes with water-cement ratio of 0.5 are allowed to hydrate in sealed containers for 28, 70, 180 days. And than pore solution is expressed. It was found that the $Cl^-$ concentrations in pore solution is decreased with increasing curing time in all Nacl addition level, the $OH^-$ concentrations is increased to 70 days but decrease at 180 days in all Nacl addition level. The $Cl^-$/$OH^-$ in pore solution is increased with increasing curing time in all Nacl addition level, however $Cl^-$/$OH^-$ of maximum Nacl addition level(Nacl 0.54% by weight of cement) is under the onset of depassivation level 0.3.

  • PDF