• Title/Summary/Keyword: Hard machining

Search Result 157, Processing Time 0.025 seconds

A study on the Micro Surface Electrochemical Machining for Aluminum Alloy (알루미늄에 대한 미세 표면 전해가공에 관한 연구)

  • 백승엽;이은상;원찬희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.214-217
    • /
    • 2002
  • Micro Surface Electrochemical Machining has traditionally been used in highly specialized fields such as those of the aerospace and defense industries. It is now increasingly being applied in other industries where parts with difficult-to-cut material, complex geometry and tribology such as compute. hard disk drive(HDD) are required. Pulse Electrochemical Micro-machining provides an economical and effective method for machining high strength, high tension, heat-resistant materials into complex shapes such as turbine blades of titanium and aluminum alloys. Usually aluminum alloys are used bearings to hard disk drive in computer. In order to apply aluminum alloys to bearing used in hard disk drive, this paper presents the characteristics of Micro Surface Electrochemical machining for aluminum alloy.

  • PDF

Study on Prediction of Surface Roughness in Hard Turning by Cutting Force (절삭력에 의한 하드터닝의 표면조도 예측에 관한 연구)

  • 이강재;양민양;하재용;이창호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1768-1771
    • /
    • 2003
  • Hard turning replaces grinding for finishing process with expectations of higher productivity and demanded surface quality. Especially for the surface roughness as surface quality demanded in finishing process of hard turning, know-how of machining characteristics of hardened materials by cutting force analysis should be accumulated in company with achievement of precision of elements and high stiffness design technology in hard turning. Considering chip formation mechanism of hardened materials, adequate cutting conditions are selected for machining experiments and cutting forces are measured according to cutting conditions. Increase of cutting forces especially thrust force and increase of dynamic instability could occur in hard turning. Analysis of dynamic characteristics of the cutting forces is executed to investigate relation between dynamic instability and surface roughness in hard turning. Investigation on effects of relative motion of machining system generated by vibration due to dynamic instability shows that ultimate surface roughness could be predicted considering relative motion of machining system with geometrical surface roughness.

  • PDF

Green and Hard Machining Characteristics of Zirconia-alumina Composites for Dental Implant (치과 임플란트용 지르코니아-알루미나 복합체의 생 가공 및 경 가공 특성)

  • Lim, Hyung-Bong;Tang, Dongxu;Lee, Ki-Ju;Cho, Won-Seung
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.2
    • /
    • pp.152-159
    • /
    • 2011
  • The green and hard machining characteristics of dental ceramics are of great interest to dental industry. The green bodies of TZP/$Al_2O_3$ composites were prepared by the cold isostatic pressing, and machined on the CNC lathe using PCD (polycrystalline diamond) insert under various machining conditions. With increasing nose radius of PCD insert, surface roughness initially increased due to increased cutting resistance, but decreased by the onset of sliding fracture. The lowest surface roughness was obtained at spindle speed of 1,300 rpm and lowest feed rate. Hard bodies were prepared by pressureless sintering the machined green bodies at several temperatures. The grinding test for sintered hard body was conducted using electroplated diamond bur with different grit sizes. During grinding, grain pull out in the composite was occurred due to thermal expansion mismatch between the alumina and zirconia. The strength of the composite decreased with alumina contents, due to increased surface roughness and high monoclinic phase transformed during grinding process. The final polished samples represented high strength by the elimination of a phase transformation layer.

Optimization of Process Parameters for EDM using Taguchi Design (Taguchi법에 의한 방전가공의 공정변수 최적화)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.4
    • /
    • pp.78-83
    • /
    • 2015
  • The method of electrical discharge machining (EDM), one of the processing methods based on non-traditional manufacturing procedures, is gaining increased popularity, since it does not require cutting tools and allows machining involving hard, brittle, thin and complex geometry. Modern ED machinery is capable of machining geometrically complex or hard material components, that are precise and difficult-to-machine such as heat treated tool steels, composites, super alloys, ceramics, etc. This paper reports the results of an experimental investigation by Taguchi method carried out to study the effects of machining parameters on material surface roughness in electric discharge machining of SM45C. The work material was ED machined with graphite and copper electrodes by varying the pulsed current, voltage and pulse time. Investigations indicate that the surface roughness is strongly depend on pulsed current.

Mirror grinding with Electrolytic In-process Dressing Method (전해인프로세스드레싱에 의한 경면연삭기술개발)

  • 이응숙;제태진;강재훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.57-60
    • /
    • 1995
  • Recently, ELID (electrolytic in-process dressing) grinding technique is developed. It is possible to make a efficient precision machining of hard materials such as ceramic hard metals, and quenched steels. This paper deals with some typical applications of ELID-grinding for cylindrcal machining. The significant advantages, performance and characteristics on mirror surface grinding for external surface are described.

  • PDF

Wear Characteristics of CBN Tools on Hard Turning of AISI 4140 (고경도강(AISI 4140, HrC60)의 하드터닝에서 가공속도 및 윤활조건 변경에 따른 CBN 공구의 마모 특성)

  • Yang, Gi-Dong;Park, Kyung-Hee;Lee, Myung-Gyu;Lee, Dong Yoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.799-804
    • /
    • 2014
  • Hard turning is a machining process for hardened materials with high surface quality so that grinding process can be eliminated. Therefore, the hard turning is capable of reducing machining time and improving productivity. In this study, hardened AISI4140 (high-carbon chromium steel) that has excellent yield strength, toughness and wear resistance was finish turned using CBN tools. Wear characteristics of CBN tool was analyzed in dry and MQL mixed with nano-particle (Nano-MQL). The dominant fracture mechanism of CBN tool is diffusion and dissolution wear on the rake surface resulting in thinner cutting edge. Abrasive wear by hard inclusion in AISI4140 was dominant on the flank surface. Nano-MQL reduced tool wear comparing with the dry machining but chip evacuation should be considered. A cryogenically treated tool showed promising result in tool wear.

Hard Turning Machinability of V30 Cemented Carbide with PCD, cBN and PcBN Cutting Tool (초경합금재의 하드터닝에서 공구재종에 따른 절삭성)

  • Heo, Sung-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.47-54
    • /
    • 2008
  • Hard turning process can be defined as a single-point machining process carried out on "hard" materials. The process is intended to replace or limit traditional grinding operations that are expensive, environmentally unfriendly, and inflexible. The purpose of this study is to achieve a systematic understanding of machining characteristics and the effects of machining parameters on cutting force, tool wear shape and chip formation by the outer cutting of a kind of wear resistant tungsten carbide V30. Hard turning experiments were carried out on this alloy using the PCD (Poly Crystalline Diamond), cBN (cubic Boron Nitride) and PcBN (Polycrystalline cubic Boron Nitride) cutting tools. The PcBN and the usual cBN tools were used to be compare with the PCD tool and the dry turning was carried out. The PcBN is attractive as the tool material which replaces the PCD. The tool wear width and cutting force were measured, and the worn tool and chip were observed. The difference of the tool wear mechanism among the three tool materials was investigated.

Surface treatment of mold components for quality improvement (금형부품의 품질향상을 위한 표면처리에 관한 연구)

  • Baek, Seung-Yub;Lee, Ha-Sung;Gang, Dong-Myung
    • Design & Manufacturing
    • /
    • v.2 no.5
    • /
    • pp.43-47
    • /
    • 2008
  • Micro Electrochemical Machining(Micro ECM) has traditionally been used in highly specialized fields such as those of the aerospace and defense industries. It is now increasingly being applied in other industries where parts with difficult-to-cut material, complex geometry and tribology such as compute. hard disk drive(HDD) are required. Pulse Electrochemical Micro-machining provides an economical and effective method for machining high strength, high tension, heat-resistant materials into complex shapes such as turbine blades of titanium and aluminum alloys. Usually aluminum alloys are used bearings to hard disk drive in computer. In order to apply aluminum alloys to bearing used in hard disk drive, this paper presents the characteristics of Micro ECM for aluminum alloy.

  • PDF

A Study on the Cylindrical Grinding Technology by Electrolytic In-Process Dressing(ELID) Method (전해인프로세스드레싱법에 의한 초정밀 원통 연삭기술 연구)

  • Je, Tae-Jin;Lee, Eung-Suk
    • 연구논문집
    • /
    • s.28
    • /
    • pp.59-71
    • /
    • 1998
  • The ELID(electrolytic in-process dressing) grinding method is a new precision grinding technique with the special electrolytic in-process dressing by metal bonded grinding wheel, fluid, and power supply. It is possible to make a efficient precision machining of hard and brittle materials such as ceramics, hard metals, and quenched steels by using this method, In this study, a new efficient precision grinding method with ELID was attempted for application to the machining and finishing processes of cylindrical structural components. And, we try to develop the cylindrical grinding technique for mirror surface of ceramics, tungsten carbide and SCM steel, and for the high efficiency grinding of machined parts, for example, ball screw shaft. Electrical characteristics of three different wheel grit sizes of #325, #2000 and #4000 were investigated experimentally. ELID grinding method is proved to be useful for mirror surface generation and efficient machining.

  • PDF

Enhanced Machinability of Sinter-hardenable PM Steels

  • Lindsley, Bruce;Schade, Chris;Fillari, George
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.299-300
    • /
    • 2006
  • Machining of sinter-hardened PM steels provides a challenge for part makers. To facilitate machining of these materials, a new additive (MA) has been developed to increase tool life during the machining process. Hard turning tests were performed to evaluate the effect of this new additive. Sintered compacts with the MA additive were compared to compacts without a machining aid and to compacts that contained the MnS additive. This paper discusses the improvement in machinability with this new additive in sinter-hardenable PM steels.

  • PDF