• Title/Summary/Keyword: Harbin

Search Result 678, Processing Time 0.022 seconds

Collaborative optimization for ring-stiffened composite pressure hull of underwater vehicle based on lamination parameters

  • Li, Bin;Pang, Yong-jie;Cheng, Yan-xue;Zhu, Xiao-meng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.4
    • /
    • pp.373-381
    • /
    • 2017
  • A Collaborative Optimization (CO) methodology for ring-stiffened composite material pressure hull of underwater vehicle is proposed. Structural stability and material strength are both examined. Lamination parameters of laminated plates are introduced to improve the optimization efficiency. Approximation models are established based on the Ellipsoidal Basis Function (EBF) neural network to replace the finite element analysis in layout optimizers. On the basis of a two-level optimization, the simultaneous structure material collaborative optimization for the pressure vessel is implemented. The optimal configuration of metal liner and frames and composite material is obtained with the comprehensive consideration of structure and material performances. The weight of the composite pressure hull decreases by 30.3% after optimization and the validation is carried out. Collaborative optimization based on the lamination parameters can optimize the composite pressure hull effectively, as well as provide a solution for low efficiency and non-convergence of direct optimization with design variables.

Cross-layer Dynamic Subcarrier Allocation with Adaptive Service Rate Control in SC-FDMA System

  • Ye, Fang;Su, Chunxia;Li, Yibing;Zhang, Xu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4823-4843
    • /
    • 2017
  • In this paper, an improved utility-based cross-layer dynamic subcarrier allocation (DSA) algorithm is proposed for single carrier frequency division multiple access (SC-FDMA) system, which adopts adaptive service rate control (ASRC) to eliminate the service rate waste and improve the spectral efficiency in heterogeneous network including non-real-time traffic and real-time traffic. In this algorithm, furthermore, a first in first out (FIFO) queuing model with finite space is established on the cross-layer scheduling framework. Simulation results indicate that by taking the service rate constraint as the necessary condition for optimality, the ASRC algorithm can effectively eliminate the service rate waste without compromising the scheduling performance. Moreover, the ASRC algorithm is able to further improve the quality of service (QoS) performance and transmission throughput by contributing an attractive performance trade-off between real-time and non-real-time applications.

A Novel Filtering Method Based on a Nonlinear Tracking Differentiator for the Speed Measurement of Direct-drive Permanent Magnet Traction Machines

  • Wang, Gaolin;Wang, Bowen;Zhao, Nannan;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.358-367
    • /
    • 2017
  • This paper presents a novel filtering method for speed measurements to improve the low-speed performance of the direct-drive permanent magnet traction machines for elevators. Based on the theory of nonlinear tracking differentiator (NTD), this method, which can act as a high performance filter of a raw speed signal, obtains a more accurate speed feedback signal when applying a low-resolution encoder. In addition, it can relieve the interference caused by the position derivative for speed sampling. By analyzing the frequency response of the NTD, the influence of its parameters on the performance of the speed filtering is investigated. Compared with different types of low-pass filters, the proposed method shows a shorter time delay and a stronger ability in terms of noise suppression when the parameters are selected carefully. In addition, when using the measured speed signal through a nonlinear tracking differentiator as the feedback of the system, the motor runs more steadily at low speeds. As a result, the riding comfort of a direct-drive elevator can be improved. The feasibility of the proposed strategy was verified on an 11.7kW elevator traction machine using a commercial inverter.

ASESDP : An Efficient Service Discovery Protocol in Pervasive Computing Environments

  • Ma, Qianli;Liao, Minghong;Jiang, Shouxu;Hong, Wan-Pyo;Gao, Zhenguo
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.4
    • /
    • pp.396-404
    • /
    • 2008
  • Service discovery is the technology of finding needed services in networks, and a key point in pervasive computing environments. This paper presents a novel service discovery protocol: ASESDP(AIP and SRR Enhanced Service Discovery Protocol). In ASESDP, tow schemes are proposed to enhance its performance: AIP(Advertisement Information Piggybacked) and SRR(Shortest Reply Route). In AIP, parts of advertisement information are piggybacked in the service reply packet, which makes the advertisement information propagating along the reply path, and spreads its transmission area. In SRR, in order to reduce the service response time, the shortest reply route is chosen to forward the service reply packet to the source node sending the service request. With the theoretical analysis and Glomosim simulation results, it is verified that ASESDP can reduce the number of service request packets, save the response time, and improve the efficiency of service discovery.

Multi-mode Radar Signal Sorting by Means of Spatial Data Mining

  • Wan, Jian;Nan, Pulong;Guo, Qiang;Wang, Qiangbo
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.725-734
    • /
    • 2016
  • For multi-mode radar signals in complex electromagnetic environment, different modes of one emitter tend to be deinterleaved into several emitters, called as "extension", when processing received signals by use of existing sorting methods. The "extension" problem inevitably deteriorates the sorting performance of multi-mode radar signals. In this paper, a novel method based on spatial data mining is presented to address above challenge. Based on theories of data field, we describe the distribution information of feature parameters using potential field, and makes partition clustering of parameter samples according to revealed distribution features. Additionally, an evaluation criterion based on cloud model membership is established to measure the relevance between different cluster-classes, which provides important spatial knowledge for the solution of the "extension" problem. It is shown through numerical simulations that the proposed method is effective on solving the "extension" problem in multi-mode radar signal sorting, and can achieve higher correct sorting rate.

Digital Control Methods of Two-Stage Electronic Ballast for Metal Halide Lamps with a ZVS-QSW Converter

  • Wang, Yijie;Zhang, Xiangjun;Wang, Wei;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.451-460
    • /
    • 2010
  • This paper presents a new kind of digital control metal halide lamp electronic ballast. A zero-voltage-switch quasi-square-wave (ZVS-QSW) dual Buck converter is adopted here. In this paper, a digital control method is proposed to achieve ZVS for the converter. This ZVS can be realized during the whole working condition. Single-cycle-peak-current control is proposed to solve the problem of excessive inductor current during a low-frequency reversal transient. Power loop control is also realized and its consistency for different lamps is good. An AVR special microcontroller for a HID ballast is used to raise the control performance, and the low-frequency square-wave control method is adopted to avoid acoustic resonance. A 70W prototype was built in the laboratory. Experimental results show that the electronic ballast works reliably. Furthermore, the efficiency of the ballast can be higher than 92%.

Droop Control Scheme of a Three-phase Inverter for Grid Voltage Unbalance Compensation

  • Liu, Hongpeng;Zhou, Jiajie;Wang, Wei;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1245-1254
    • /
    • 2018
  • The stability of a grid-connected system (GCS) has become a critical issue with the increasing utilization of renewable energy sources. Under grid faults, however, a grid-connected inverter cannot work efficiently by using only the traditional droop control. In addition, the unbalance factor of voltage/current at the common coupling point (PCC) may increase significantly. To ensure the stable operation of a GCS under grid faults, the capability to compensate for grid imbalance should be integrated. To solve the aforementioned problem, an improved voltage-type grid-connected control strategy is proposed in this study. A negative sequence conductance compensation loop based on a positive sequence power droop control is added to maintain PCC voltage balance and reduce grid current imbalance, thereby meeting PCC power quality requirements. Moreover, a stable analysis is presented based on the small signal model. Simulation and experimental results verify the aforementioned expectations, and consequently, the effectiveness of the proposed control scheme.

Power Distribution Control Scheme for a Three-phase Interleaved DC/DC Converter in the Charging and Discharging Processes of a Battery Energy Storage System

  • Xie, Bing;Wang, Jianze;Jin, Yu;Ji, Yanchao;Ma, Chong
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1211-1222
    • /
    • 2018
  • This study presents a power distribution control scheme for a three-phase interleaved parallel DC/DC converter in a battery energy storage system. To extend battery life and increase the power equalization rate, a control method based on the nth order of the state of charge (SoC) is proposed for the charging and discharging processes. In the discharging process, the battery sets with high SoC deliver more power, whereas those with low SoC deliver less power. Therefore, the SoC between each battery set gradually decreases. However, in the two-stage charging process, the battery sets with high SoC absorb less power, and thus, a power correction algorithm is proposed to prevent the power of each particular battery set from exceeding its rated power. In the simulation performed with MATLAB/Simulink, results show that the proposed scheme can rapidly and effectively control the power distribution of the battery sets in the charging and discharging processes.

Stress variation analysis based on temperature measurements at Zhuhai Opera House

  • Lu, Wei;Teng, Jun;Qiu, Lihang;Huang, Kai
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.1-13
    • /
    • 2018
  • The Zhuhai Opera House has an external structure consisting of a type of spatial steel, where the stress of steel elements varies with the ambient temperature. A structural health monitoring system was implemented at Zhuhai Opera House, and the temperatures and stresses of the structures were monitored in real time. The relationship between the stress distribution and temperature variations was analysed by measuring the temperature and stresses of the steel elements. In addition to measurements of the structure stresses and temperatures, further simulation analysis was carried out to provide the detailed relationship between the stress distributions and temperature variations. The limited temperature measurements were used to simulate the structure temperature distribution, and the stress distributions of all steel elements of the structure were analysed by building a finite element model of the Zhuhai Opera House spatial steel structure. This study aims to reveal the stress distributions of steel elements in a real-world project based on temperature variations, and to supply a basic database for the optimal construction time of a spatial steel structure. This will not only provide convenient, rapid and safe early warnings and decision-making for the spatial steel structure construction and operation processes, but also improve the structural safety and construction accuracy of steel space structures.

Optimization of Influencing Factors on Biomass Accumulation and 5-Aminolevulinic Acid (ALA) Yield in Rhodobacter sphaeroides Wastewater Treatment

  • Liu, Shuli;Li, Xiangkun;Zhang, Guangming;Zhang, Jie
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1920-1927
    • /
    • 2015
  • This study aimed to optimize four factors affecting biomass accumulation and 5-aminolevulinic acid (ALA) yield together with pollutants removal in Rhodobacter sphaeroides wastewater treatment. Results showed that it was feasible to produce biomass and ALA in R. sphaeroides wastewater treatment. Microaerobic, 1,000-3,000 lux, and pH 7.0 were optimal conditions for the highest ALA yield of 4.5 ± 0.5 mg/g-biomass. Under these conditions, COD removal and biomass production rate were 93.3 ± 0.9% and 31.8 ± 0.5 mg/l/h, respectively. In addition, trace elements Fe2+, Mg2+, Ni2+, and Zn2+ further improved the ALA yield, COD removal, and biomass production rate. Specifically, the highest ALA yield (12.5 ± 0.6 mg/g-biomass) was achieved with Fe2+ addition.