• Title/Summary/Keyword: Haptic-Aided Design

Search Result 6, Processing Time 0.027 seconds

Haptic-Aided Design Using a Haptic Chair Capable of Adjustable Backrest (등판 조절이 가능한 햅틱의자를 이용한 햅틱 보조 설계)

  • Huh, Seok-Haeng;Lee, Sang-Duck;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.3
    • /
    • pp.243-249
    • /
    • 2009
  • In modern society, people spend most of their time on various types of chairs. However, it is not easy for a designer to design a comfortable chair because satisfaction with the chair depends not only on the quantitative elements such as size, but also on the qualitative element such as the user's feeling. To deal with these problems, there have been many studies on designing ergonomic chairs. This paper proposes the haptic-aided design (HAD) system to design an ergonomic chair. Based on the HAD system, the designer can experience whether the chair is comfortable or not through the haptic device, and also can modify the design parameters instantaneously. The haptic chair capable of controlling the design parameters in real time was proposed as a haptic simulator. The controllable parameters, such as seat height, reclining angle, stiffness of the backrest, and so on were selected based on the previous research related to ergonomic chairs. The proposed methodology will help reduce the development cost and time by replacing the process of making the real mock-ups and prototypes with the haptic chair.

  • PDF

Design of Haptic Chair based on Haptic-Aided Design Capable of Design Parameter Adjustment (햅틱보조설계 기반의 설계변수 조절이 가능한 햅틱의자의 설계)

  • Huh, Seok-Haeng;Jin, Yong-Jie;Song, Jae-Bok
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.860-864
    • /
    • 2008
  • In modern society, people tend to spend their time on various types of chairs. However, it is not easy for a designer to design a comfortable chair, because satisfaction with the chair depends not only on the quantitative elements such as size, but also on the qualitative element such as the user's feeling. To deal with these problems, there have been many studies on designing an ergonomics chair. In this paper, the hapticaided design (HAD) system was adopted to design the ergonomics chair. Based on the HAD system, the designer can experience whether the chair is comfortable or not through the haptic device, and also can modify the design parameters instantaneously. The haptic chair capable of controlling the design parameters in real time was proposed as a haptic simulator. The controllable parameters such as the seat height, reclining angle, stiffness of the backrest, and so on were selected based on the previous researches related to ergonomics chairs. It will reduce the development cost and time by replacing the process of making the real mock-up and prototype with the haptic chair.

  • PDF

Design of Backrest and Seat Pan of Chairs on the Basis of Haptics-Aided Design Method (햅틱 보조 설계 기법에 기반한 의자의 등판 및 좌판의 설계)

  • Jin, Yong-Jie;Lee, Sang-Duck;Song, Jae-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.527-533
    • /
    • 2010
  • The feeling that is evoked when products are handled has become increasingly important in the design of products primarily used by humans. In the traditional product design process, prototypes are built several times in order to evaluate the feeling evoked during use. However, these design processes can be optimized by adopting a haptic simulator that can serve as a prototype. The design method based on the use of the haptic simulator is called haptics-aided design (HAD), which is the main subject of this paper. Here, a new HAD method that can be effectively used to design a custom-made chair is proposed. A haptic simulator, which is composed of a haptic chair and an intuitive graphical user interface, was developed. The simulator can adjust the impedance of the backrest and seat pan of a chair in real time. The haptic chair was used instead of real prototypes in order to evaluate the comfort of the initially designed seat pan and backrest on the basis of their stiffness and damping values. It was shown that the HAD method can be effectively used to design a custom-made chair and can be extended to other product design processes.

Human-Oriented Design of Backrest of Office Chair Using Haptic-aided Design and Lumber Angle Prediction (햅틱보조설계 기법과 요추각도의 예측을 이용한 의자등판의 인간중심적인 설계)

  • Lee, Sang-Duck;Lee, Hae-A;Song, Jae-Bok;Chae, Soo-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1581-1586
    • /
    • 2010
  • Haptic-aided design (HAD) involves the use of a haptic simulator in place of physical prototypes in the design and development of products with which human beings interact physically. The development time and cost can be significantly reduced by adopting this HAD scheme. Although both physical and emotional factors are equally important, only the emotional factors were taken into consideration in the previous HAD process. Consequently, the design of the products was sometimes unsatisfactory from the viewpoint of ergonomics, even though users were emotionally satisfied with the products. To overcome this problem, in this study, we propose a new human-oriented design methodology that is enhanced by taking the physical factors into consideration. The HAD scheme was verified by using a haptic chair simulator to design a tilt mechanism of an office chair for which the stiffness of the backrest can be adjusted; then, the design was simulated using MADYMO. The results show that the proposed method can reflect both the physical and emotional factors to modify the design in real-time.

3D Simulation of Dental Implant Surgery Using Surgical Guide Stents (식립 보조도구를 이용한 3D 치아 임플란트 시술 시뮬레이션)

  • Park, Hyung-Wook;Kim, Myong-Soo;Park, Hyung-Jun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.3
    • /
    • pp.216-226
    • /
    • 2011
  • Surgeon dentists usually rely on their experiential judgments from patients' oral plaster casts and medical images to determine the positional and directional information of implant fixtures and to perform drilling tasks during dental implant surgical operations. This approach, however, may cause some errors and deteriorate the quality of dental implants. Computer-aided methods have been introduced as supportive tools to alleviate the shortcomings of the conventional approach. In this paper, we present an approach of 3D dental implant simulation which can provide the realistic and immersive experience of dental implant information. The dental implant information is primarily composed of several kinds of 3D mesh models obtained as follows. Firstly, we construct 3D mesh models of jawbones, teeth and nerve curves from the patient's dental images using software $Mimics^{TM}$. Secondly, we construct 3D mesh models of gingival regions from the patient's oral impression using a reverse engineering technique. Thirdly, we select suitable types of implant fixtures from fixture database and determine the positions and directions of the fixtures by using the 3D mesh models and the dental images with software $Simplant^{TM}$. Fourthly, from the geometric and/or directional information of the jawbones, the gingival regions, the teeth and the fixtures, we construct the 3D models of surgical guide stents which are crucial to perform the drilling operations with ease and accuracy. In the application phase, the dental implant information is combined with the tangible interface device to accomplish 3D dental implant simulation. The user can see and touch the 3D models related with dental implant surgery. Furthermore, the user can experience drilling paths to make holes where fixtures are implanted. A preliminary user study shows that the presented approach can be used to provide dental students with good educational contents. With future work, we expect that it can be utilized for clinical studies of dental implant surgery.