• Title/Summary/Keyword: Haptic Mouse

Search Result 13, Processing Time 0.023 seconds

An Interactive Game with a Haptic Mouse (햅틱마우스를 이용한 인터랙티브 게임)

  • Cho, Seong-Man;Jung, Dong-June;Heo, Soo-Chul;Um, Yoo-Jin;Kim, Sang-Youn
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.1-5
    • /
    • 2009
  • In this paper, we develop a haptic mouse system for immersive human computer interaction. The proposed haptic mouse system can provide vibrotactile feedback as well as thermal feedback for realistic virtual experience. For vibrotactile and thermal feedback, we use eccentric motors, a solenoid, and a peltier actuator. In order to evaluate the proposed haptic mouse, we implement a racing game prototype system. The experimental result shows that our haptic mouse is expected to be useful in experiencing virtual world.

  • PDF

A Haptic Mouse for an Immersive Interface (몰입형 인터페이스를 위한 햅틱 마우스)

  • Kim, Da-Hye;Cho, Seong-Man;Kim, Sang-Youn
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.9
    • /
    • pp.1210-1220
    • /
    • 2011
  • In this paper, we suggest a haptic mouse system as an immersive interface between virtual environment and a human operator. The proposed haptic mouse creates vibrotacitle and thermal sensation to increase the immersion. The vibrotactile module is composed of eccentric motors and a solenoid actuator, and the thermal module consists of a thin-film resistance temperature detector and a Peltier thermoelectric heat pump. In order to evaluate the proposed haptic mouse system, we develop a simple racing game and conduct an experiment. The result of the experiment shows that the proposed haptic mouse system can improve the sense of reality in virtual environment and can be used as an effective interface between virtual environment and a human operator.

Design of a novel haptic mouse system

  • Choi, Hee-Jin;Kwon, Dong-Soo;Kim, Mun-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.51.4-51
    • /
    • 2002
  • $\textbullet$ A noval haptic mouse system is developed for human computer interface. $\textbullet$ Five bar mechanism is adapted for 2 dof force feedback with virtual environment. $\textbullet$ Double prismatic joint type mechanism is adapted to reflect 1 dof grabbing force feedback. $\textbullet$ Cable driven mechansim is used for actuation to reduce backlash and endow backdrivability. $\textbullet$ Virtual wall perception experiment is conducted to obtain force specification for haptic mouse. $\textbullet$ Average mouse workspace is measured using magnetic position tracker.

  • PDF

Z-Clutching: Interaction Technique for Navigating 3D Virtual Environment Using a Generic Haptic Device

  • Song, Deok-Jae;Kim, Seokyeol;Park, Jinah
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.1
    • /
    • pp.32-38
    • /
    • 2016
  • Navigating a large 3D virtual environment using a generic haptic device can be challenging since the haptic device is usually bounded by its own physical workspace. On the other hand, mouse interaction easily handles the situation with a clutching mechanism-simply lifting the mouse and repositioning its location in the physical space. Since the haptic device is used for both input and output at the same time, in many cases, its freedom needs to be limited in order to accommodate such a situation. In this paper, we propose a new mechanism called Z-Clutching for 3D navigation of a virtual environment by using only the haptic device without any interruption or sacrifice in the given degrees of freedom of the device's handle. We define the clutching state which is set by pulling the haptic handle back into space. It acts similarly to lifting the mouse off the desk. In this way, the user naturally feels the haptic feedback based on the depth (z-direction), while manipulating the haptic device and moving the view as desired. We conducted a user study to evaluate the proposed interaction technique, and the results are promising in terms of the usefulness of the proposed mechanism.

Bubble Popping Augmented Reality System Using a Vibro-Tactile Haptic Mouse (진동촉각 햅틱 마우스 기반 버블포핑 증강현실 시스템)

  • Jung, Da-Un;Lee, Woo-Keun;Jang, Seong-Eun;Kim, Man-Bae
    • Journal of Broadcast Engineering
    • /
    • v.15 no.6
    • /
    • pp.715-722
    • /
    • 2010
  • As one of applications in augmented realities, this paper presents a bubble popping system utilizing a haptic vibro-tactile mouse. In this system, virtual bubbles randomly float in the 3D space. By using the vibro-tactile mouse grabbed by a user, the bubbles are popped when they are touched by the mouse in the 3D space. Then a bubble popping effect with addition mouse vibration is delivered to the user's hand through the mouse. The proposed system is developed on ARToolkit environment. Therefore, basic components such as a camera and a marker pattern are required. The systems is composed of a vibro-haptic mouse, a webcam, a marker pattern, a graphic bubble object, and graphic mouse. Mouse vibration as well as bubble fade-out effect is delivered. Therefore, the combination of visual and tactile bubble popping effects outperforms the usage of a single effect in the experience of augmented reality.

Using Haptic Device in Multimedia Education (멀티미디어 제작 실습에서의 촉각장치 활용에 관한 연구)

  • Kim, Young-Ook;Kim, Yoon-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.78-80
    • /
    • 2006
  • Mouse is widely used in multimedia education. However, using mouse is not easy for user to get exact three dimentional (3D) user input and to manipulate delicately as the user can not know the surface information of virtual objects, which are typical drawbacks of using mouse in multimedia education, especially in 3D multimedia contents authoring. In this paper, haptic device is introduced to the 3D multimedia education. The haptic device provides 3D user's input information as well as haptic information of virtual objects such as surface textures, collisions and etc. which thus allow to enhance the task efficiency in multimedia education. Simple experiment results are presented to show the positive results of using the haptic device in multimedia education.

  • PDF

Inflatable Mouse: Volume-adjustable Mouse with Air-pressure-sensitive Input and Haptic Feedback (부풀어지는 마우스: 기압센서를 이용한 입력과 햅틱 피드백을 갖는 부피가 변하는 마우스)

  • Kim, Seok-Tae;Lee, Bo-Ram;Kim, Hyun-Jung;Nam, Tek-Jin;Lee, Woo-Hun
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02b
    • /
    • pp.323-328
    • /
    • 2008
  • Inflatable Mouse is a volume-adjustable user interface. It can be inflated up to the volume of a familiar mouse, but be deflated and stored flat in a PC card slot of a laptop computer when not in use. Inflatable Mouse functions just like a typical mouse; moreover, it provides new interaction techniques by sensing the air pressure in the balloon of the mouse. It also addresses some issues associated with pressure-sensing interactions such as the lack of bi-directional control and the lack of effective feedback. Moreover, it can be used as both a control tool and a display tool. In this paper, the design of an Inflatable Mouse prototype is described and potential application scenarios such as zooming in/out and fast scrolling using pressure control are explained. We also discuss the potential use of Inflatable Mouse as an emotional communication tool.

  • PDF

Development of A Haptic Interactive Virtual Exhibition Space (햅틱 상호작용을 제공하는 가상 전시공간 개발)

  • You, Yong-Hee;Cho, Yun-Hye;Choi, Geon-Suk;Sung, Mee-Young
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.6
    • /
    • pp.412-416
    • /
    • 2007
  • In this paper, we present a haptic virtual exhibition space that allows users to interact with 3D graphic objects not only through the sense of sight but also through the sense of touch. The haptic virtual exhibition space offers users in different places some efficient ways to experience the exhibitions of a virtual musical museum using the basic human senses of perception, such as vision, audition, and touch. Depending on 3D graphic objects, we apply different properties to let those feel realistic. We also provide haptic device based navigation which prevents users from rushing between various interfaces: keyboard and mouse. The haptic virtual museum is based on Client-Server architecture and clients are represented in the 3D space in the form of avatars. In this paper, we mainly discuss the design of the haptic virtual exhibition space in detail and in the end, we provide performance analysis in comparison to other similar applications such as QTVR and VRML).

Vibrotactile Glove Mouse (진동촉각 글러브 마우스)

  • Park, Jun-Hyung;Jeong, Ju-Seok;Jang, Tae-Jeong
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.741-744
    • /
    • 2009
  • In this paper, We introduce the glove mouse using a Gyroscope, acceleration sensor, Pin-type Viboratctile Display Device and USB HID. The device recognize a user's wrist by Gyroscope and acceleration sensor in the glove and transmit the data to USB dongle which is recognized the manufactured mouse by Blutooth. Also, using a special application, We transmit the tactile information to user through the Pin-type Vibrotactile Display. We implement wearable system in the glove except USB device. If user want to use general spatial mouse, we recognize mouse USB dongle only without another application. If user want to feel the tactile sensationn, we can use by connecting PC serial communication port to USB dongle.

  • PDF

A study on 3D Pottery Modeling based on Web (웹기반 3D 도자기 모델링에 관한 연구)

  • Park, Gyoung Bae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.209-217
    • /
    • 2012
  • In this paper, I proposed new system that a user makes modeling 3D symmetric pottery using mouse and can confirm the result immediately in internet browser. The main advantage of proposed system is that users who have no specialized knowledge about 3D graphic can easily create 3D objects. And a user can use it that has only PC connected network and mouse without additional devices as like expensive haptic and camera device. For developing proposed system, VRML/X3D that is International Standard language for virtual reality and 3D graphics was used. Because it was born based on internet that is different from other 3D graphic languages, it was able to interact and navigate with users. With those features and high completeness of 3D pottery realization using mouse considered, the system may be useful and is superior in performance to other pottery modeling system.