• Title/Summary/Keyword: Haploid genome

Search Result 34, Processing Time 0.024 seconds

A karyotype analysis of Lactuca (Asteraceae) in Korea (한국산 왕고들빼기속(Lactuca)의 핵형분석)

  • Yang, Ji Young;Choi, Kyung;Pak, Jae-Hong
    • Korean Journal of Plant Taxonomy
    • /
    • v.39 no.1
    • /
    • pp.24-28
    • /
    • 2009
  • The chromosome morphology of two Korean Lactuca (L. indica, L. triangulata) is reported herein. The chromosome number and karyotype of a naturalized plant, L. scariola are reported for the first time. The basic chromosome number was x = 9. Polyploid forms were not recorded. The karyotypes of L. indica, L. scariola, and L. triangulata were 2 n = 18 = 2 m+ 7 sm, 2 n = 18 = 1 m + 6 sm+ 2 st, 2 n = 18 = 2 m + 5 sm+ 2 st, respectively. Both L. indica and L. triangulata had satellites at the ends of their short arms. The haploid genome lengths of L. indica, L.scariola, and L. triangulata were $56.3{\mu}m$, $35.3{\mu}m$, and $72.5{\mu}m$ respectively. Each chromosome length of naturalized L. scariola was $2.7-5.2{\mu}m$; the smallest among Korean Lactuca. The chromosome lengths of L. indica and L. triangulata were $4.7-7.6{\mu}m$ and $2.9-7.9{\mu}m$, respectively. The karyotype of L. scariola differed from that of L.indica and L.triangulata both of which belong to sect. Tuberosae. Therefore, L. scariola is thought to belong to sect. Lactuca subsect. Lactuca.

Development of new broccoli varieties from elite lines obtained by microspore cultivation method (소포자 배양 유래 계통을 활용한 브로콜리 신품종 조기 육성)

  • Kwak, Jung-Ho;Park, Miyoung;Lee, Jun-Gu;Park, Suhyung;Kim, Dae-Young;Jeong, Seung-Ryong;Lim, Yong Pyo;Yoon, Moo Kyoung
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.4
    • /
    • pp.497-502
    • /
    • 2012
  • Since the year 2000, the production and consumption of broccoli have rapidly increased in Korea. And, the average production area and amount were about 1,700 ha and 29,000 ton for the past 5 years. Even with the increase of these cultivation and consumption, more than 95% of the broccoli seeds are currently imported from foreign countries such as Japan and Netherlands. Therefore, development of domestic broccoli varieties is needed to relieve Korean farmers' production cost for broccoli. In this situation, National Institute of Horticultural and Herbal Science (NIHHS) of Korea has tried to develop F1 hybrid varieties from elite lines that were obtained by microspore cultivation method from 2008. As the results, about 850 lines of broccoli were obtained and self-pollinated. Then their ploidy levels of the genome were confirmed to select double haploid (D.H.) lines. And the D.H. lines' horticultural traits were evaluated in open field. After the selection of 17 elite D.H. lines, they were cross-pollinated with a male sterile (MS) line to produce F1 hybrid seeds. After 2 to 3 years field trials of these F1 hybrid varieties at the area of Suwon, Gangneung, and Jeju respectively, two hybrid varieties such as 'Wongyo8011' and 'Wongyo8012' are selected for the application of variety protection. With these 4 years of research, we found that the microspore cultivation method is a powerful tool for the conventional breeding program, especially for the development of various inbred lines and even F1 hybrid varieties in short time.

Recent Advances in the Studies of Self-Incompatibility of plants (식물의 자가불화합성, 최근의 진보)

  • 한창열;한지학
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.5
    • /
    • pp.253-275
    • /
    • 1994
  • Many flowering plants possess genetically controlled self -incompatibility (SI) system that prevents inbreeding and promotes outcrosses. SI is usually controlled by a single, multiallelic S-locus. In gametophytically controlled system, SI results when the S-allele of the pollen is matched by one of the two S-alleles in the style, while in the sporophytic system self-incompatible reaction occurs by the interaction between the pistil genotype and genotype of, not the pollen, but the pollen parent In the former system the self-incompatible phenotype of pollen is determined by the haploid genome of the pollen itself but in the latter the pollen phenotype is governed by the genotype of the pollen parent along with the occurrence of either to-dominant or dominant/recessive allelic interactions. In the sporophytic type the inhibition reaction occurs within minutes following pollen-stigma contact, the incompatible pollen grains usually failing to germinate, whereas in gametophytic system pollen tube inhibition takes place during growth in the transmitting tissue of the style. Recognition and rejection of self pollen are the result of interaction between the S-locus protein in the pistil and the pollen protein. In the gametophytic SI the S-associated glycoprotein which is similar to the fungal ribonuclease in structure and function are localized at the intercellular matrix in the transmitting tissue of the style, with the highest concentration in the collar of the stigma, while in the sporophytic SI deposit of abundant S-locus specific glycoprotein (SLSG).is detected in the cell wall of stigmatic papillae of the open flowers. In the gametophytic system S-gene is expressed mostly at the stigmatic collar the upper third of the style length and in the pollen after meiosis. On the other hand, in the sporophytic SI S-glycoprotein gene is expressed in the papillar cells of the stigma as well as in e sporophytic tape is cells of anther wall. Recognition and rejection of self pollen in the gametophytic type is the reaction between the ribonuclease in the transmitting tissue of the style and the protein in the cytoplasm of pollen tube, whereas in the sporophytic system the inhibition of selfed pollen is caused by the interaction between the Sycoprotein in the wall of stigmatic papillar cell and the tapetum-origin protein deposited on the outer wall of the pollen grain. The claim that the S-allele-associated proteins are involved in recognition and rejection of self pollen has been made merely based on indirect evidence. Recently it has been verified that inhibition of synthesis of S$_3$ protein in Petunia inflata plants of S$_2$S$_3$ genotype by the antisense S$_3$ gene resulted in failure of the transgenic plant to reject S$_3$ pollen and that expression of the transgenic encoding S$_3$ protein in the S$_1$S$_2$ genotype confers on the transgenic plant the ability to reject S$_3$ pollen. These finding Provide direct evidence that S-proteins control the s elf-incompatibility behavior of the pistil.

  • PDF

Systematic Target Screening Revealed That Tif302 Could Be an Off-Target of the Antifungal Terbinafine in Fission Yeast

  • Lee, Sol;Nam, Miyoung;Lee, Ah-Reum;Lee, Jaewoong;Woo, Jihye;Kang, Nam Sook;Balupuri, Anand;Lee, Minho;Kim, Seon-Young;Ro, Hyunju;Choi, Youn-Woong;Kim, Dong-Uk;Hoe, Kwang-Lae
    • Biomolecules & Therapeutics
    • /
    • v.29 no.2
    • /
    • pp.234-247
    • /
    • 2021
  • We used a heterozygous gene deletion library of fission yeasts comprising all essential and non-essential genes for a microarray screening of target genes of the antifungal terbinafine, which inhibits ergosterol synthesis via the Erg1 enzyme. We identified 14 heterozygous strains corresponding to 10 non-essential [7 ribosomal-protein (RP) coding genes, spt7, spt20, and elp2] and 4 essential genes (tif302, rpl2501, rpl31, and erg1). Expectedly, their erg1 mRNA and protein levels had decreased compared to the control strain SP286. When we studied the action mechanism of the non-essential target genes using cognate haploid deletion strains, knockout of SAGA-subunit genes caused a down-regulation in erg1 transcription compared to the control strain ED668. However, knockout of RP genes conferred no susceptibility to ergosterol-targeting antifungals. Surprisingly, the RP genes participated in the erg1 transcription as components of repressor complexes as observed in a comparison analysis of the experimental ratio of erg1 mRNA. To understand the action mechanism of the interaction between the drug and the novel essential target genes, we performed isobologram assays with terbinafine and econazole (or cycloheximide). Terbinafine susceptibility of the tif302 heterozygous strain was attributed to both decreased erg1 mRNA levels and inhibition of translation. Moreover, Tif302 was required for efficacy of both terbinafine and cycloheximide. Based on a molecular modeling analysis, terbinafine could directly bind to Tif302 in yeasts, suggesting Tif302 as a potential off-target of terbinafine. In conclusion, this genome-wide screening system can be harnessed for the identification and characterization of target genes under any condition of interest.