• Title/Summary/Keyword: Hanger

Search Result 127, Processing Time 0.022 seconds

Impact effect analysis for hangers of half-through arch bridge by vehicle-bridge coupling

  • Shao, Yuan;Sun, Zong-Guang;Chen, Yi-Fei;Li, Huan-Lan
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.1
    • /
    • pp.65-75
    • /
    • 2015
  • Among the destruction instances of half-through arch bridges, the shorter hangers are more likely to be ruined. For a thorough investigation of the hanger system durability, we have studied vehicle impact effect on hangers with vehicle-bridge coupling method for a half-through concrete-filled-steel-tube arch bridge. A numerical method has been applied to simulate the variation of dynamic internal force (stress) in hangers under different vehicle speeds and road surface roughness. The characteristics and differences in impact effect among hangers with different length (position) are compared. The impact effect is further analyzed comprehensively based on the vehicle speed distribution model. Our results show that the dynamic internal force induced by moving vehicles inside the shorter hangers is significantly greater than that inside the longer ones. The largest difference of dynamic internal force among the hangers could be as high as 28%. Our results well explained a common phenomenon in several hanger damage accidents occurred in China. This work forms a basis for hanger system's fatigue analysis and service life evaluation. It also provides a reference to the design, management, maintenance, monitoring, and evaluation for this kind of bridge.

Design of Cam Contour for Constant Hangers (등하중지지대의 캠 윤곽 설계)

  • Lee, Gun-Myung;Park, Mun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.6
    • /
    • pp.669-675
    • /
    • 2011
  • A constant hanger is a device for supporting pipes in plants. It supplies a constant force to a supporting pipe even if the pipe moves because of thermal expansion. In this paper, we propose a method for designing the contour of a cam for a constant hanger. It has been shown that the contour of a cam must satisfy the geometrical relation of the cam, the force balance equation for the load tube, the relation between the side spring compression and the cam rotation angle, and the moment balance equation for the cam. A calculation procedure to solve these equations simultaneously is proposed, and a constant hanger is designed successfully.

An evaluation of iced bridge hanger vibrations through wind tunnel testing and quasi-steady theory

  • Gjelstrup, H.;Georgakis, C.T.;Larsen, A.
    • Wind and Structures
    • /
    • v.15 no.5
    • /
    • pp.385-407
    • /
    • 2012
  • Bridge hanger vibrations have been reported under icy conditions. In this paper, the results from a series of static and dynamic wind tunnel tests on a circular cylinder representing a bridge hanger with simulated thin ice accretions are presented. The experiments focus on ice accretions produced for wind perpendicular to the cylinder at velocities below 30 m/s and for temperatures between $-5^{\circ}C$ and $-1^{\circ}C$. Aerodynamic drag, lift and moment coefficients are obtained from the static tests, whilst mean and fluctuating responses are obtained from the dynamic tests. The influence of varying surface roughness is also examined. The static force coefficients are used to predict parameter regions where aerodynamic instability of the iced bridge hanger might be expected to occur, through use of an adapted theoretical 3-DOF quasi-steady galloping instability model, which accounts for sectional axial rotation. A comparison between the 3-DOF model and the instabilities found through two degree-of-freedom (2-DOF) dynamic tests is presented. It is shown that, although there is good agreement between the instabilities found through use of the quasi-steady theory and the dynamic tests, discrepancies exist-indicating the possible inability of quasi-steady theory to fully predict these vibrational instabilities.

An Analysis of the Polymer Melt Flow in Extruder Dies (고분자압출 다이스의 유동해석)

  • Choi, Man Sung;Kim, Kwang Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.19-25
    • /
    • 2013
  • Extrusion is one of the most important operations in the polymer-processing industry. Balancing the distribution of flow through a die to achieve a uniform velocity distribution is the primary objective and one of the most difficult tasks of extrusion die design. If the manifold in a coat-hanger die is not properly designed, the exit velocity distribution may be not uniform; this can affect the thickness across the width of the die. Yet, no procedure is known to optimize the coat hanger die with respect to an even velocity profile at the exit. While optimizing the exit velocity distribution, the constraint optimization used in this work with allowable pressure drop in the die; according to this constraint we can control the pressure in the die. The computational approach incorporates three-dimensional finite element simulations software STAR-CCM+. These simulations are used with numerical optimization to design polymer coat hanger dies with pressure drop, uniform velocity and temperature variation across the die exit.

Fairing Design Optimization of Missile Hanger for Drag Reduction (유도탄 행거 항력 저감을 위한 페어링 형상 최적화)

  • Jeong, Sora
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.527-535
    • /
    • 2019
  • Hanger in a rail-launched missile protrudes in general and causes to increase significant drag force. One method to avoid the significant increase of drag force is to apply fairings on the hanger. In this paper, sloping shaped fairing parameters of height, width, and length are optimized to minimize the drag force under subsonic speed region by examining three configurations of fairings : front-fairing only, rear-faring only, and the both front and rear fairing. We use Latin Hypercube Sampling method to determine the experimental points, and computational fluid dynamics with incompressible RANS solver was applied to acquire the data at sampling points. Then, we construct a meta model by kriging method. We find the best choice among three configurations examined : both front and rear fairing reduce the drag force by 63 % without the constraint of fairing mass, and front fairing reduced the drag force by 52 % with the constraint of hanger mass.

Wake-induced vibration of the hanger of a suspension bridge: Field measurements and theoretical modeling

  • Li, Shouying;Deng, Yangchen;Lei, Xu;Wu, Teng;Chen, Zhengqing
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.169-180
    • /
    • 2019
  • The underlying mechanism of the wind-induced vibration of the hangers of the suspension bridges is still not fully understood at present and hence is comprehensively examined in this study. More specifically, a series of field measurements on the No. 2 hanger of the Xihoumen Bridge was first carefully conducted. Large amplitude vibrations of the hanger were found and the oscillation amplitude of the leeward cable was obviously larger than that of the windward cables. Furthermore, the trajectory of the leeward cable was close to an ellipse, which agreed well with the major characteristics of wake-induced vibration. Then, a theoretical model for the wake-induced vibration based on a 3-D continuous cable was established. To obtain the responses of the leeward cable, the finite difference method (FDM) was adopted to numerically solve the established motion equation. Finally, numerical simulations by using the structural parameters of the No. 2 hanger of the Xihoumen Bridge were carried out within the spatial range of $4{\leq}X{\leq}10$ and $0{\leq}Y{\leq}4$ with a uniform interval of ${\Delta}X={\Delta}Y=0.25$. The results obtained from numerical simulations agreed well with the main features obtained from the field observations on the Xihoumen Bridge. This observation indicates that the wake-induced vibration might be one of the reasons for the hanger oscillation of the suspension bridge. In addition, the effects of damping ratio and windward cable movement on the wake-induced vibration of the leeward cable were numerically investigated.

An Experimental Study on Isolation System of Aerial Gas Pipeline for Vehicle Vibration (차량진동에 대한 노출가스관의 방진 시스템 개발을 위한 실험적 연구)

  • 박연수;강성후;박선주
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.5
    • /
    • pp.131-139
    • /
    • 2001
  • In this paper, aerials gas pipeline vibrations due to the passing of vehicles have been measured, and peak values and characteristics of vibration were analyzed. In order to develop isolation system for gas pipeline, six cases with various support condition and hanging method were tested. The hanger used instead of wore rope isolated almost all vibrations transmitted from main beam. In the results of test, we could decrease response of vibration velocity from 49 % to 56 % and response of vertical vibration acceleration from 49 % to 60 %, because hanger instead of wire rope was used and rubber pads instead of wooden shield plates at support positions for Proofing horizontal vibration were used.

  • PDF

The research of application plan for the twist absorption structure type brake holder hanger (비틀림 흡수구조형 제륜자 홀더행거의 적용방안에 관한 연구)

  • Hong Jai-Sung;Ham Young-Sam;Paik Young-Nam
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.903-908
    • /
    • 2004
  • Among welded structure bogies in use for high speed freight car, a part of bogies manufactured in 1999 and 2000 have found problems that crack occurs in its end beam. In case of a freight car the difference of weight between empty and loading conditions are worse than in case of a passenger car. Moreover its brake system is tread brake without second suspension system. Cracks of end beam is supposed to be due to loading by brake system rather than vertical loading by freight. These cracks can make brake system useless and may be a cause of derailment in the worst case. In this study, we have proposed a simple torsion-free brake shoe holder hanger to remove torsion of hanger bracket which was supposed to be one of causes of cracks and performed finite element analyses. Also static load test was applied in torsion free brake shoe holder.

  • PDF

Structural strength analysis according to the configuration of speaker placer with wall hanger type (벽걸이형 스피커 거치대 형상에 따른 구조강도 해석)

  • Cho, Jae Ung;Han, Moon Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • This study investigates life and damage due to structural and fatigue load at speaker placer with wall hanger type. As the small stress and deformation are shown at the models of A, B and C shapes on structural analysis, there is no problem at installing speaker placer. As the largest stress is happened at the middle part of joint on the models of A, B and C shapes, this part must be considered at the design. A shape is thought to have most fatigue damage among 3 shape models. C shape model has most excellent, but A model has least at fatigue durability. This study result is applied with the design of speaker placer and it can be useful at predicting prevention and durability against its damage.

FE Analysis of Forged Parts of Suspension Bridge : cases of Strand Shoe and Hanger Socket (입체요소를 이용한 현수교 주단강품의 유한요소해석 : 스트랜드슈와 행어소켓)

  • 최창근;이태열;노혁천;김재철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.149-156
    • /
    • 1998
  • In suspension bridges, the axial farces in the wires are transferred by side pressure on the semicircular face, and further from the strand shoe through rods to a base plate fixed to the massive concrete part of the anchor block. For prefabricated strands the most common way of anchoring is by socketing the ends of the strands. In this study, strand shoe and hanger socket are analyzed far various load conditions using Finite Element Method. The finite element models are built using MSC/PATRAN and analysis is carried out using MSC/NASTRAN. Results are again completely processed using MSC/PATRAN. From the results of the analysis, trends of deformation and stress distribution are reviewed and important factors to consider in the design of strand shoe and hanger socket are discussed.

  • PDF