• Title/Summary/Keyword: Hangang Bridge

Search Result 14, Processing Time 0.033 seconds

Analysis of Tidal Effect in Hangang Bridge by Automatic Discharge Measurement (자동유량측정에 의한 한강대교 조석영향 분석)

  • Lee, Min-Ho;Kim, Chang-Wan;Yoo, Dong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.7
    • /
    • pp.513-523
    • /
    • 2009
  • The measuring point of the Hangang Bridge affected by tide has some special topographic characteristics due to Nodle Island. Furthermore the submerged weirs located on the upstream and downstream. Therefore flow is separated and joined by Nodle Island. Discharge measurement at the point of the Hangang Bridge is very important, because Hangang Bridge is key station in managing the discharge and flood forecasting. In the past, it was too difficult to measure discharge in tidal conditions. HRFCO(Han River Flood Control Office) installed automatic discharge measurement facilities for solving this problem. Measuring equipments operates and measures discharge every 10 minutes at 2 points(southern and northern section close to Nodle Island), and calculates flow discharge using Chiu's velocity law(Chiu, 1988). In order to verify the results of automatic discharge measurements, manual discharge measurements were carried out by ADCP. In addition, the monthly discharge were also compared.

Lighting the Archs of the Hangang Grand Bridge and the water-flow under the Chamshil Grand Bridge (한강대교아아치 및 교각조명과 잠실대교수중보 조명계획)

  • 지철근;장우진;권영혜
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.4 no.1
    • /
    • pp.41-45
    • /
    • 1990
  • By considering the process and elements of the lighting design of bridges and its piers, it is possible to deduce the principle problems under its contraints and to approach it rationally and systematically. The major problem of this study is to analyze the diverse problems of the lighting design process. Through the lighting process of the arches of the Hangang Grand Bridge and its piers, and of the water-flow under the Chamshil Grand Bridge, the methods to accomplish the goal of lighting will be suggested.

  • PDF

Mechanism for Bank Erosion and Local Scouring in Estuary of the Hangang River

  • Lee, Samhee;Han, Hyeongjun;Choo, Jeongho
    • Journal of Wetlands Research
    • /
    • v.16 no.4
    • /
    • pp.453-462
    • /
    • 2014
  • The levee and bridge pier in estuary of the Hangang River are exposed in a dangerous condition due to bank erosion and local scouring occurred since the summer season in 2011. At first, it is presumed that the high sandbar formed in river channel of the study area was an important element in the occurrence of bank erosion and local scouring. It can be presumed that the record-breaking depth of freezing due to cold wave for the long term during the winter season between 2010 and 2011 as well as the heavy intensive rainfall of 2011 had a decisive effect on the first damage of A section. The second damage of B section mainly occurred around the bridge pier constructed on the high water channel before it was washed away during the winter season between 2011 and 2012. It is considered that the second damage was caused by ice formation and ice floes.

Artificial Neural Networks for Flood Forecasting Using Partial Mutual Information-Based Input Selection

  • Jae Gyeong Lee;Li Li;Kyung Soo Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.363-363
    • /
    • 2023
  • Artificial Neural Networks (ANN) is a powerful tool for addressing various practical problems and it has been extensively applied in areas of water resources. In this study, Artificial Neural Networks (ANNs) were developed for flood forecasting at specific locations on the Han River. The Partial Mutual Information (PMI) technique was used to select input variables for ANNs that are neither over-specified nor under-specified while adequately describing the underlying input-output relationships. Historical observations including discharges at the Paldang Dam, flows from tributaries, water levels at the Paldang Bridge, Banpo Bridge, Hangang Bridge, and Junryu gauge station, and time derivatives of the observed water levels were considered as input candidates. Lagged variables from current time t to the previous five hours were assumed to be sufficient in this study. A three-layer neural network with one hidden layer was used and the neural network was optimized by selecting the optimal number of hidden neurons given the selected inputs. Given an ANN architecture, the weights and biases of the network were determined in the model training. The use of PMI-based input variable selection and optimized ANNs for different sites were proven to successfully predict water levels during flood periods.

  • PDF

Changes of Physical Structure of Hangang(Riv.) in Seoul City Area (서울시 구간 한강의 물리적 구조 변화에 관한 연구)

  • Hong, Sukhwan;Yeum, Junghun;Han, Bongho
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.403-408
    • /
    • 2017
  • This study aims to set up the basic data to manage the waterfowl habitat through the analysis of the changes of physical structure according to the time series of Hangang(Riv.) as water birds' habitat. Study area was 41.5km in length from Paldang bridge to Hangju bridge. during total length of 497.52km and horizontal boundary was based on the protected lowland in year 1975. As the analysis result of land use from the center of water to adjacent road to the river, ratio of year 1975 was in order of sedimentary land(22.7%), surface water(20.7%), built-up area(16.9%), field(16.2%), paddy field(15.9%), and afterwards most of the areas were changed through the construction of arterial highway and submerged weir in order to use Hangang(Riv.). In year 1985, the area ratio of protected lowland(57.8%) and surface water(32.8%) dramatically increased. After construction of river bank the recreational areas continually increased and relatively natural areas decreased. In year 2005, the area ratio of protected lowland was enlarged to 57.6% and surface water also to 33.3%. While the length of both riversides and naturalness decreased by 10.9%, 91.5% respectively in year 2005 compared to year 1975, the depth of water increased by 1.46m. Comprehensively, the flow of changes by physical structure in Hangang(Riv.) for 30 years was divided into two periods. The main characteristics in the first period were decrease of riverside area and enlargement of the surface water through the massive construction before middle of year 1980, and afterwards revetments were intensively artificialized with changes of land use for amusement area. In terms of water fowl habitat, Hangang(Riv.) which previously had various types of habitat condition was changed into simplified habitat for few of species, and the active improvement apporach was needed for habitat diversity.

Nonparametric Flood Frequency Analysis at Hangang Bridge (한강대교 지점에서의 비매개변수적 홍수빈도해석)

  • Oh, Tae-Suk;Yoon, Sun-Kwon;Oh, Keun-Taek;Moon, Young-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1225-1229
    • /
    • 2008
  • 본 연구에서는 한강의 중요한 관측지점인 한강대교(구 인도교)지점에서 관측된 연최대치 홍수량을 자료를 이용하여 홍수빈도해석을 수행하였다. 홍수빈도해석을 위하여 확률분포형을 가정해 적합도 검정을 통해 최적 분포형을 선정해 확률홍수량을 산정하는 매개변수적 빈도해석과 원자료에 핵함수를 적용하는 비매개 변수적 빈도해석을 통해 각각 산정한 확률홍수량을 비교하였다. 비매개변수적 빈도해석을 위해서는 변동핵 밀도함수를 적용한 Modified Cauchy 핵밀도함수와 Sheater & Jones Plug-In 광역폭 결정 방법을 이용하였다. 따라서 본 연구에서 분석한 확률홍수량과 한강대교 지점의 계획홍수량의 비교를 통해 현재의 계획홍 수량의 적정성을 평가하였다.

  • PDF

Analysis of curved multicell box girder assemblages

  • Razaqpur, A. Ghani;Li, Hangang
    • Structural Engineering and Mechanics
    • /
    • v.5 no.1
    • /
    • pp.33-49
    • /
    • 1997
  • A method of analysis is proposed for curved multicell box girder grillages. The method can be used to analyze box girder grillages comprising straight and/or curved segments. Each segment can be modelled by a number of beam elements. Each element has three nodes and the nodal degrees of freedom (DOF) consist of the six DOF for a conventional beam plus DOF to account for torsional warping, distortion, distortional warping, and shear lag. This element is an extension of a straight element that was developed earlier. For a more realistic analysis of the intersection regions of non-colinear box girder segments, the concept of a rigid connector is introduced, and the compatibility requirements between adjoining elements in those regions are discussed. The results of the analysis showed good agreement with the shell finite element results, but the proposed method of analysis needs a fraction of the time and effort compared to the shell finite element analysis.

A Basic Study for the Restoration of Noryang Temporary Palace (노량행궁의 복원을 위한 기초연구)

  • Koo, Uk-Hee
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.5
    • /
    • pp.109-118
    • /
    • 2018
  • Noryang Temporary Palace was a place where king Jeongjo (1752-1800) would have lunch after crossing the Temporary Palace River on his way to Hwaseong Temporary Palace to worship at Hyeonryungwon, the tomb of his father, Sadoseja. The government offices in charge of ship bridge construction 'Jugyosa' and 'Byeoljangso' were located in the Temporary Palace. The central buildings of the Haenggung Palace, which ranged up to Yongyangbongjeojeong, were arranged to observe both 'Jugyosa' and 'Byeoljangso' from the Temporary Palace by lifting the ground from Sammun Gate to Yongyangbongjeojeong. Yongyangbongjeojeong, the center of Noryang Temporary Palace, features the style of royal palace architecture and functions of housing architecture. The 'Jugyosa' and 'Byeoljangso' buildings had eight quarters. According to the records, in addition, 15 wood sheds, 5 rice hubs, 3 barns, 1 side gate quarter, 1 front gate, 70 separate sheds, 2 suragan temporary buildings, oesammun gate and hongsalmun gate were found. Such architectural layout is matched with the Temporary Palace Jugyohwaneodo Painting.

Prediction of water quality in Tan stream of the Han river (장래 탄천수질과 한강본류에 미치는 영향 예측)

  • 신정식;정종흡;오경두;나규환
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.3
    • /
    • pp.49-56
    • /
    • 2001
  • The water quality simulation was carried out to predict water quality in Tan stream of the Han river using water quality model, QUAL2E. In the end, the future variations in water quality of Tan stream were simulated and the prediction of the impacts of Tan stream on water quality in the Han river was carried out by applying the Tan stream simulation results into the model. The results are as follows. The predicted results of future water quality of Tan stream suggested that the concentrations of BOD, T-N and T-P at Chungdam bridge would increase to 0.68~0.77 mg/$\ell$, 1.33~1.62 mg/$\ell$ and 0.05~0.06 mg/$\ell$, respectively in 2006 and 2011 and that with the implementation of advanced treatment in Sungnam and Tanchun sewage treatment plants, the concentration of T-N would be reduced more as the amount of treated sewage increase, while the concentration of T-P would stay 0.49 mg/$\ell$. The results obtained from simulation of the impacts of future Tan stream water quality improvement on the main stream of the Han river showed that with implementation of advanced treatment in both Sungnam and Tanchun sewage treatment plants, the concentration of T-N, T-P and chlorophyll-a at Hangang bridge and Heangju bridge would be reduced by 11.6%, 7.7% and 20.9%, respectively in 2..6 and by 13.6%, 9.4% and 22.2%, respectively in 2011, which indicates that the effect on the reduction of T-N and T-P would be relatively significant while the effect on the decrease of algae would be slight.

  • PDF

A Study on the Data Driven Neural Network Model for the Prediction of Time Series Data: Application of Water Surface Elevation Forecasting in Hangang River Bridge (시계열 자료의 예측을 위한 자료 기반 신경망 모델에 관한 연구: 한강대교 수위예측 적용)

  • Yoo, Hyungju;Lee, Seung Oh;Choi, Seohye;Park, Moonhyung
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.2
    • /
    • pp.73-82
    • /
    • 2019
  • Recently, as the occurrence frequency of sudden floods due to climate change increased, the flood damage on riverside social infrastructures was extended so that there has been a threat of overflow. Therefore, a rapid prediction of potential flooding in riverside social infrastructure is necessary for administrators. However, most current flood forecasting models including hydraulic model have limitations which are the high accuracy of numerical results but longer simulation time. To alleviate such limitation, data driven models using artificial neural network have been widely used. However, there is a limitation that the existing models can not consider the time-series parameters. In this study the water surface elevation of the Hangang River bridge was predicted using the NARX model considering the time-series parameter. And the results of the ANN and RNN models are compared with the NARX model to determine the suitability of NARX model. Using the 10-year hydrological data from 2009 to 2018, 70% of the hydrological data were used for learning and 15% was used for testing and evaluation respectively. As a result of predicting the water surface elevation after 3 hours from the Hangang River bridge in 2018, the ANN, RNN and NARX models for RMSE were 0.20 m, 0.11 m, and 0.09 m, respectively, and 0.12 m, 0.06 m, and 0.05 m for MAE, and 1.56 m, 0.55 m and 0.10 m for peak errors respectively. By analyzing the error of the prediction results considering the time-series parameters, the NARX model is most suitable for predicting water surface elevation. This is because the NARX model can learn the trend of the time series data and also can derive the accurate prediction value even in the high water surface elevation prediction by using the hyperbolic tangent and Rectified Linear Unit function as an activation function. However, the NARX model has a limit to generate a vanishing gradient as the sequence length becomes longer. In the future, the accuracy of the water surface elevation prediction will be examined by using the LSTM model.