• Title/Summary/Keyword: Handwritten address

Search Result 14, Processing Time 0.016 seconds

Handwritten Korean Word Recognition for Address Recognition (주소 인식 시스템을 위한 필기 한글 단어 인식)

  • 권진욱;이관용;변혜란;이일병
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.201-204
    • /
    • 1997
  • 최근 주소를 자동으로 인식하여 우편물 분류와 같은 업무를 효과적으로 수행하기 위한 연구가 진행되고 있다. 기존 연구들은 낱자 단위의 인식을 수행한 후 사전 형태의 간단한 DB를 통해 최종의 결과를 생성한다. 그러나 한글과 같은 복잡한 구조의 필기 문자에 대한 인식기의 성능은 아직도 미흡한 상태이다. 따라서 낱자 인식기의 성능에 의존하는 현재와 같은 방법으로는 만족할 만한 결과를 얻기가 힘들 것으로 생각된다. 본 논문에서는 낱자 인식 결과에 크게 의존하지 않고 주소에 나타나는 단어의 낱자들 사이간 연결 정보를 이용하여 단어를 인식할 수 있는 시스템을 제안한다. 본 시스템은 통계적 인식기를 사용하여 낱자를 인식하는 부분과 낱자 인식 결과를 조합하여 단어 수준의 인식과정을 통해 최종의 결과를 생성하는 부분으로 구성된다. 통계적 인식기는 Nearest neighborhood 방법을 사용하여 간단한 형태로 구현하였다. 단어인식 모듈은 단어에서 모든 문자간의 관계를 표현할 수 있도록 HMM 모형을 사용하여 어휘정보 네트워크를 구성하고 이를 이용하여 주소에 나타나는 단어를 인식하도록 하였다. PE92 한글 문자 데이터를 이용하여 실험을 수 璿\ulcorner 결과, 통계적 인식기의 성능이 저조함에도 불구하고 HMM을 이용한 어휘정보 네트워크가 이를 보완함으로써 좋은 결과를 얻었다. 이러한 단어 인식 방법을 주소 이외의 다른 단어 집합에 대해서도 쉽게 적용될 수 있을 것으로 예상된다.

  • PDF

An Improved method of Two Stage Linear Discriminant Analysis

  • Chen, Yarui;Tao, Xin;Xiong, Congcong;Yang, Jucheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1243-1263
    • /
    • 2018
  • The two-stage linear discrimination analysis (TSLDA) is a feature extraction technique to solve the small size sample problem in the field of image recognition. The TSLDA has retained all subspace information of the between-class scatter and within-class scatter. However, the feature information in the four subspaces may not be entirely beneficial for classification, and the regularization procedure for eliminating singular metrics in TSLDA has higher time complexity. In order to address these drawbacks, this paper proposes an improved two-stage linear discriminant analysis (Improved TSLDA). The Improved TSLDA proposes a selection and compression method to extract superior feature information from the four subspaces to constitute optimal projection space, where it defines a single Fisher criterion to measure the importance of single feature vector. Meanwhile, Improved TSLDA also applies an approximation matrix method to eliminate the singular matrices and reduce its time complexity. This paper presents comparative experiments on five face databases and one handwritten digit database to validate the effectiveness of the Improved TSLDA.

Writer Verification Using Spatial Domain Features under Different Ink Width Conditions

  • Kore, Sharada Laxman;Apte, Shaila Dinkar
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.2
    • /
    • pp.39-50
    • /
    • 2016
  • In this paper, we present a comparative study of spatial domain features for writer identification and verification with different ink width conditions. The existing methods give high error rates, when comparing two handwritten images with different pen types. To the best of our knowledge, we are the first to design the feature with different ink width conditions. To address this problem, contour based features were extracted using a chain code method. To improve accuracy at higher levels, we considered histograms of chain code and variance in bins of histogram of chain code as features to discriminate handwriting samples. The system was trained and tested for 1,000 writers with two samples using different writing instruments. The feature performance is tested on our newly created dataset of 4,000 samples. The experimental results show that the histogram of chain code feature is good compared to other methods with false acceptance rate of 11.67%, false rejection rate of 36.70%, average error rates of 24.18%, and average verification accuracy of 75.89% on our new dataset. We also studied the effect of amount of text and dataset size on verification accuracy.

Character Recognition for Fast Handwritten Korean Address Reading (고속 필기 한글 주소 인식을 위한 낱자 인식)

  • Jeong, Seon-Hwa;Lim, Kil-Taek;Song, Jae-Gwan;Nam, Yun-Seok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.10a
    • /
    • pp.589-592
    • /
    • 2001
  • 본 논문에서는 고속 필기 한글 주소 인식을 위한 낱자 인식기를 제안한다. 인식 대상은 우편번호 여섯 자리에 할당된 주소에 출현 빈도가 높은 필기 한글 469 자이다. 제안된 방법은 낱자 인식 기법을 채택하고 있으며, 인식률과 처리속도를 향상시키기 위하여 2 단계 인식 전략을 채택하였다. 인식기로는 다층퍼셉트론, 최소거리분류기, Subspace 방법을 고려한다. 다층퍼셉트론은 비교적 높은 인식률과 처리속도를 보유하지만 출력값이 확률이 아님으로써 후처리를 필요로 하는 시스템에서 사용하기 어렵다. 최소거리분류기는 간단한 알고리즘으로 처리속도가 높고 확률을 출력하는 장점을 갖지만 인식률이 낮아 활용되기 어렵다. 또한 Subspace 방법은 인식률이 높고 확률을 출력하지만 처리속도가 매우 느리다는 단점이 있다. 따라서 제안방법에서는 처리속도가 높은 인식기 - 다층퍼셉트론, 최소거리분류기 - 를 사용하여 선인식을 수행한 후, 이 결과를 활용하여 인식 대상을 제한한 후 Subspace 방법을 사용하여 정확하게 인식하는 전략을 도입함으로써, 높은 인식결과를 유지하면서 처리속도를 높이고 후처리에 적합하도록 하였다. PE92 데이터베이스를 사용하여 실험한 결과 제안방법이 한글 469 자에 대하여 비교적 높은 인식률과 처리속도를 갖음을 알 수 있었다.

  • PDF