• Title/Summary/Keyword: Handwritten Digits

Search Result 40, Processing Time 0.022 seconds

Parallel, self-organizing, hierarchical neural networks for handwritten digit recognition (필기체 숫자인식을 위한 병렬 자구성 계층 신경회로망)

  • 방극준;조남신;강창언;홍대식
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.7
    • /
    • pp.173-182
    • /
    • 1996
  • In this paper, we propose the parallel, self-organizing, hierarchical neural netowrks as a handwritten digit recognition system. This system can absorb the various shape variations of handwritten digits by using the different methods of extracting the features in each stage neural network (SNN) of the PSHNN, and can reduce training time by using the single layer neural network as the SNN, and can obtain high rate of correct recognition by using the certainty area in all the output nodes individually. experiments have been performed with NIST database. In which we use 21, 315 digits (10, 625 digits for training and 10,663 digits for testing). The results show that the correct rate is 97.48% the error rate is 1.72% and the reject rate is 0.78%.

  • PDF

On the Classification of Online Handwritten Digits using the Enhanced Back Propagation of Neural Networks (개선된 역전파 신경회로망을 이용한 온라인 필기체 숫자의 분류에 관한 연구)

  • Hong, Bong-Hwa
    • The Journal of Information Technology
    • /
    • v.9 no.4
    • /
    • pp.65-74
    • /
    • 2006
  • The back propagation of neural networks has the problems of falling into local minimum and delay of the speed by the iterative learning. An algorithm to solve the problem and improve the speed of the learning was already proposed in[8], which updates the learning parameter related with the connection weight. In this paper, we propose the algorithm generating initial weight to improve the efficiency of the algorithm by offering the difference between the input vector and the target signal to the generating function of initial weight. The algorithm proposed here can classify more than 98.75% of the handwritten digits and this rate shows 30% more effective than the other previous methods.

  • PDF

Unconstrained Handwritten Numeral Sti-ing Recognition by Using Decision Value Generator (결정값 발생기를 이용한 무제약 필기체 숫자 열의 인식)

  • 김계경;김진호;박희주
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.6 no.1
    • /
    • pp.82-89
    • /
    • 2001
  • This paper presents recognition of unconstrained handwritten numeral strings using decision value generator, which is combined with both isolated digit identifier and recognizer designed with structural characteristics of digits. Numerical string recognition system is composed of three modules, which are pre-segmentation, segmentation and recognition. Pre-segmentation module classifies a numeral string into sub-images, which are isolated digit, touched digits or broken digit, using confidence value of decision value generator. Segmentation module segments touched digits using reliability value of decision value generator that will separate the leftmost digit from touched string of digits. Segmentation-based and segmentation-free methods have used for classification and segmentation, respectively. To evaluate proposed method, experiments have carried out with handwritten numeral strings of NIST SD19 and higher recognition performance than previous works has obtained with 96.7%.

  • PDF

Recognition of Unconstrained Handwritten Digits Using Raised Cosine RBF Neural Networks (Raised Cosine RBF 신경망을 이용한 무제약 필기체 숫자 인식)

  • 박준근;김상희;박원우
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.1
    • /
    • pp.48-53
    • /
    • 2002
  • In this paper, we presented a new approach to the recognition of unconstrained handwritten numerals using an improved RBF(Radial Basis Function) Neural Networks. The RBF Neural Networks used Raised Cosine as a basis function to improve discrimination and reduce processing time. The performance of Raised Cosine RBF Neural Networks classifier was evaluated using totally unconstrained handwritten numeral database of Concordia University, Montreal, Canada, and the experimental results showed the recognition rate of 98.05%.

  • PDF

Recognition of Unconstrained Handwritten Numerals using Modified Chaotic Neural Networks (수정된 카오스 신경망을 이용한 무제약 서체 숫자 인식)

  • 최한고;김상희;이상재
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.1
    • /
    • pp.44-52
    • /
    • 2001
  • This paper describes an off-line method for recognizing totally unconstrained handwritten digits using modified chaotic neural networks(MCNN). The chaotic neural networks(CNN) is modified to be a useful network for solving complex pattern problems by enforcing dynamic characteristics and learning process. Since the MCNN has the characteristics of highly nonlinear dynamics in structure and neuron itself, it can be an appropriate network for the robust classification of complex handwritten digits. Digit identification starts with extraction of features from the raw digit images and then recognizes digits using the MCNN based classifier. The performance of the MCNN classifier is evaluated on the numeral database of Concordia University, Montreal, Canada. For the relative comparison of recognition performance, the MCNN classifier is compared with the recurrent neural networks(RNN) classifier. Experimental results show that the classification rate is 98.0%. It indicates that the MCNN classifier outperforms the RNN classifier as well as other classifiers that have been reported on the same database.

  • PDF

Handwritten Indic Digit Recognition using Deep Hybrid Capsule Network

  • Mohammad Reduanul Haque;Rubaiya Hafiz;Mohammad Zahidul Islam;Mohammad Shorif Uddin
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.89-94
    • /
    • 2024
  • Indian subcontinent is a birthplace of multilingual people where documents such as job application form, passport, number plate identification, and so forth is composed of text contents written in different languages/scripts. These scripts may be in the form of different indic numerals in a single document page. Due to this reason, building a generic recognizer that is capable of recognizing handwritten indic digits written by diverse writers is needed. Also, a lot of work has been done for various non-Indic numerals particularly, in case of Roman, but, in case of Indic digits, the research is limited. Moreover, most of the research focuses with only on MNIST datasets or with only single datasets, either because of time restraints or because the model is tailored to a specific task. In this work, a hybrid model is proposed to recognize all available indic handwritten digit images using the existing benchmark datasets. The proposed method bridges the automatically learnt features of Capsule Network with hand crafted Bag of Feature (BoF) extraction method. Along the way, we analyze (1) the successes (2) explore whether this method will perform well on more difficult conditions i.e. noise, color, affine transformations, intra-class variation, natural scenes. Experimental results show that the hybrid method gives better accuracy in comparison with Capsule Network.

Online Digit Recognition using Start and End Point

  • Shim, Jae-chang;Ansari, Md Israfil
    • Journal of Multimedia Information System
    • /
    • v.4 no.1
    • /
    • pp.39-42
    • /
    • 2017
  • Communication between human and machine is having been researched from last few decades and still it's a challenging task because human behavior is unpredictable. When it comes on handwritten digits almost each human has their own writing style. Handwritten digit recognition plays an important role, especially in the courtesy amounts on bank checks, postal code on mail address etc. In our study, we proposed an efficient feature extraction system for recognizing single digit number drawn by mouse or by a finger on a screen. Our proposed method combines basic image processing and reading the strokes of a line drawn. It is very simple and easy to implement in various platform as compare to the system which required high system configuration. This system has been designed, implemented, and tested successfully.

Off-line Handwritten Digit Recognition by Combining Direction Codes of Strokes (획의 방향 코드 조합에 의한 오프라인 필기체 숫자 인식)

  • Lee Chan-Hee;Jung Soon-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.12
    • /
    • pp.1581-1590
    • /
    • 2004
  • We present a robust off-line method recognizing handwritten digits by only using stroke direction codes as a feature of handwritten digits. This method makes general 8-direction codes for an input digit and then has the multi-layered neural networks learn them and recognize each digit. The 8-direction codes are made of the thinned results of each digit through SOG*(Improved Self-Organizing Graph). And the usage of these codes simplifies the complex steps processing at least two features of the existing methods. The experimental result shows that the recognition rates of this method are constantly better than 98.85% for any images in all digit databases.

A Study on Human Recognition Experiments with Handwritten Digit for Machine Recognition of Handwritten Digit (필기 숫자의 기계 인식을 위한 인간의 필기 숫자 인식 실험에 대한 고찰)

  • Yoon, Sung-Soo;Chung, Hyun-Sook;Yi, Kwang-Oh;Lee, Yill-Byeong;Lee, Sang-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.373-380
    • /
    • 2008
  • So far there have been many researches on machine-based recognition of handwritten digit. But we have not yet attained the level of performance that can be satisfactory to men. The dissatisfaction with the performance of machine comes from not only the low accuracy of recognition but also the dissimilarity of the recognition results between man and machine. To reduce the difference of machine from man we first made an experiment with the human recognition of handwritten digits and then inquiry into the way of the human recognition that makes the results of men different from that of machine. We found out the attributes that play an important role in the human recognition process through the analysis of the experimental results like uni- and bi-directional confused pairs of digits, several ones unmixed up with another and the redundancy of mis-recognition, and proposed the approach direction to be able to improve the accuracy of the machine-based recognition, and furthermore the similarity in the recognition results of men and machine on the basis of the found facts above.

Design of Digits Recognition System Based on RBFNNs : A Comparative Study of Pre-processing Algorithms (방사형 기저함수 신경회로망 기반 숫자 인식 시스템의 설계 : 전처리 알고리즘을 이용한 인식성능의 비교연구)

  • Kim, Eun-Hu;Kim, Bong-Youn;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.416-424
    • /
    • 2017
  • In this study, we propose a design of digits recognition system based on RBFNNs through a comparative study of pre-processing algorithms in order to recognize digits in handwritten. Histogram of Oriented Gradient(HOG) is used to get the features of digits in the proposed digits recognition system. In the pre-processing part, a dimensional reduction is executed by using Principal Component Analysis(PCA) and (2D)2PCA which are widely adopted methods in order to minimize a loss of the information during the reduction process of feature space. Also, The architecture of radial basis function neural networks consists of three functional modules such as condition, conclusion, and inference part. In the condition part, the input space is partitioned with the use of fuzzy clustering realized by means of the Fuzzy C-Means algorithm. Also, it is used instead of gaussian function to consider the characteristic of input data. In the conclusion part, the connection weights are used as the extended type of polynomial expression such as constant, linear, quadratic and modified quadratic. By using MNIST handwritten digit benchmarking database, experimental results show the effectiveness and efficiency of proposed digit recognition system when compared with other studies.