딥 러닝 기술의 등장으로 여러 나라의 필기체 인식은 높은 정확도 (중국어 필기체 인식은 97.2%, 일본어 필기체 인식은 99.53%)를 보인다. 하지만 한글 필기체는 한글의 특성으로 유사글자가 많은데 비해 문자의 데이터 수는 적어 글자 인식에 어려움이 있다. 하이브리드 러닝을 통한 한글 필기체 인식에서는 lenet을 기반으로 하여 낮은 레이어를 가진 모델을 사용하여 한글 필기체 데이터베이스 PE92에서 96.34%의 정확도를 보여주었다. 본 논문에서는 하이브리드 러닝에서 사용하였던 데이터 확장 기법(data augmentation)이나 multitasking을 사용하지 않고도 GoogLenet 네트워크를 기본으로 한글 필기체 데이터에 적합한 더 깊고 더 넓은 CNN(Convolution Neural Network) 네트워크를 도입하여 PE92 데이터베이스에서 98.64%의 정확도를 얻었다.
Journal of the Korean Society for Industrial and Applied Mathematics
/
제27권2호
/
pp.135-145
/
2023
Recently, as deep learning technology has developed, various deep learning technologies have been introduced in handwritten recognition, greatly contributing to performance improvement. The recognition accuracy of handwritten Hangeul recognition has also improved significantly, but prior research has focused on recognizing 520 Hangul characters or 2,350 Hangul characters using SERI95 data or PE92 data. In the past, most of the expressions were possible with 2,350 Hangul characters, but as globalization progresses and information and communication technology develops, there are many cases where various foreign words need to be expressed in Hangul. In this paper, we propose a model that recognizes and combines the consonants, medial vowels, and final consonants of a Korean syllable using a multi-label classification model, and achieves a high recognition accuracy of 98.38% as a result of learning with the public data of Korean handwritten characters, PE92. In addition, this model learned only 2,350 Hangul characters, but can recognize the characters which is not included in the 2,350 Hangul characters
이 논문에서는 농축산물 이력추적관리제의 성공적 도입 및 확대에 있어 중요한 기반요소인 생산이력정보를 효율적으로 수집할 수 있는 수기정보 전자화 기술 기반의 농축산물 생산이력정보 수집 시스템을 제안한다. 제안 시스템은 디지털펜으로 종이문서 형태의 관리대장 작성만으로 기록 대장과 동일한 디지털이미지를 생성하고, 필기체인식을 통해 기록 내용을 데이터베스화한다. 제안 시스템은 PC, PDA, 터치스크린 등의 정보 수집기기에 비해 이동성, 사용 편이성, 데이터 입력 속도 측면에서 뛰어나고, 열악한 농축산 작업 환경에서 사용하기 적합하기 때문에 전산능력과 시간적 여유가 없는 농가에서 효율적으로 양질의 생산이력정보를 수집할 수 있다. 수기정보 전자화 기술은 가공, 유통, 판매 단계의 종이문서 기반 정보취득 업무에 적용될 수 있으며, RFID/USN 기반 시스템과 연동하여 고도화된 이력추적관리 시스템 구축에 사용될 수 있다.
This paper describes the Tezpur University dataset of online handwritten Assamese characters. The online data acquisition process involves the capturing of data as the text is written on a digitizer with an electronic pen. A sensor picks up the pen-tip movements, as well as pen-up/pen-down switching. The dataset contains 8,235 isolated online handwritten Assamese characters. Preliminary results on the classification of online handwritten Assamese characters using the above dataset are presented in this paper. The use of the support vector machine classifier and the classification accuracy for three different feature vectors are explored in our research.
In order to develop a character recognition system, it is an essential preceding work that gathers an image data of the standard. On this purpose a data of the digitized images of a handwritten characters was collected. The types of a gathered image data are Korean character, Chiness character, Numeral, English character, Special character, and so on. This paper deals with a handwritten character image data base, and the image data base different from the general storage structure of a lame capacity multimedia was designed and builded.
필기체 낱글자 인식을 위해서 사용되는 데이터는 일반적으로 다수의 사용자들로부터 수집된 자연언어 문장들을 이용하기 때문에 해당 언어의 언어적 특성에 따라서 낱글자의 종류별 개수 차이가 매우 큰 특징이 있다. 일반적인 기계학습 문제에서 학습데이터의 불균형 문제는 성능을 저하시키는 중요한 요인으로 작용하지만, 필기체 인식에서는 데이터 자체의 높은 분산과 비슷한 모양의 낱글자 등이 성능 저하의 주요인이라 생각하기 때문에 이를 크게 고려하지 않고 있다. 본 논문에서는 이러한 데이터의 불균형 문제를 고려하여 필기체 인식기의 성능을 향상시킬 수 있는 과표본화 기반의 앙상블 학습 기법을 제안한다. 제안한 방법은 데이터의 불균형 문제를 고려하지 않은 방법보다 전체적으로 향상된 성능을 보일 뿐만 아니라 데이터의 개수가 부족한 낱글자들의 분류성능에 있어서도 향상된 결과를 보여준다.
This paper presents a method which can recognized the Handwritten Korean characters by using a Context-Free Grammar. The input characters are thinned in order to dwindle the mount of data, the thinned characters are converted into one-dimension strings according to six-forms. when the point of contact among phonemes is found, two phonemes are seperated respectively by marking the index mark (\) at the points. The Context-Free Grammar to input characters is classified into group grammars concerning the similarity of phonemes, input characters are parsed by making use of the Pushdown automata method. As the bent parts in the Handwritten characters are found frequently, We try to correct the bent parts by using the parsing distance measure, which recognize characters according to minium value caused by measuring the weight distance between two sentences. In this experiment, the recognition rate shows 93.8% to 275 Handwritten Korean characters.
In the construction industry, IT based information system has been diversely applied to increase productivity. Although IT device such as PDA, RFID, Barcode, wireless network and web camera has been introduced to gather information in construction site, the effect of the IT device is limited, because of bringing about additional works of engineer. In this paper, we proposed a defect management system which is based on handwritten document digitalization framework for introducing applicability of new IT device, digital pen. By the proposed system, we can effectively gather and input defect information to defect management system by using digital pen and paper like conventional way. Applying the data gathering device, digital pen to defect management, it is able to increase productivity by improving work process, building up and utilizing defect information database of good quality.
본 논문에서는 Zernike 모멘트와 backpropagation신경망을 이용한 온라인 필기체 숫자 인식 방법을 소개한다. 마우스로 통해 입력된 숫자 정보는 전처리를 통해 시간에 순서적이고, 연속적인 좌표 정보로 변환된다. 전처리된 입력 좌표는 Zernike 모멘트(moment)와 각도 특징(angulation feature)을 이용하여 각 숫자가 가지는 고유의 특징을 만들어 낸다. 이러한 특징은 크기, 모양, 틀어진 정도에 상관없이 항상 일정한 성질을 가진다. 제안된 방법으로 추출된 특징은 패턴 구분을 위해 back propagation 신경망의 입력으로 사용된다. 본 논문은 200개의 필기체 숫자 데이터베이스를 이용하여 실험을 한 결과, 제시된 방법은 적은 학습데이터만으로 학습이 가능할 뿐만 아니라 좋은 인식률을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.