• Title/Summary/Keyword: Handling Process

Search Result 1,021, Processing Time 0.049 seconds

Load Scheduling Using a Genetic Algorithm in Port Container Terminals (컨테이너 터미날에서의 유전자 해법을 이용한 적하계획법)

  • Kim, Kap-Hwan;Kim, Ki-Young;Ko, Chang-Seong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.4
    • /
    • pp.645-660
    • /
    • 1997
  • An application of the genetic algorithm(GA) to the loading sequencing problem in port container terminals is presented in this paper. The efficiency of loading operations in port container terminals is highly dependent on the loading sequence of export containers. In order to sequence the loading operation, we hove to determine the route of each container handling equipment (transfer crane or straddle carried in the yard during the loading operation. The route of a container handling equipment is determined in a way of minimizing the total container handling time. An encoding method is developed which keeps intermediate solutions feasible and speeds up the evolution process. We determine the sequence of each individual container which the container handling equipment picks up at each yard-bay as well as the visiting sequence of yard-bays of the equipment during the loading operation. A numerical experiment is carried out to evaluate the performance of the algorithm developed.

  • PDF

An intelligent consultant for mataerial handling equipment selection and evaluation (물자취급장비 선정과 평가를 위한 지능화된 자문시스템)

  • 박양병
    • Korean Management Science Review
    • /
    • v.12 no.1
    • /
    • pp.35-50
    • /
    • 1995
  • The material handling equipment selection, that is a key task in the material handling system design, is a complex, difficult task, and requires a massive technical knowledge and systematic analysis. It is also invaluable to justify the selected equipment model by the performance evaluation before its actual implementation. This paper presents an intelligent knowledge-based expert system called "IMESE" created by author, for the selection and evaluation of material handling equipment model suitable for movement and storage of materials in a manufacturing facility. The IMESE was constructed by using the tools of VP-Expert expert system shell, DBASEIII plus, FORTRAN 77, and SLAMII simulation language. The whole process of IMESE is executed under VP-Expert expert system environment.vironment.

  • PDF

A Study on Performance and Cost Analysis Model for Material Handling Systems in FMS Design (통합생산시스템의 설계를 위한 물류시스템의 성능 및 비용분석 모델의 연구)

  • 황흥석
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.157-160
    • /
    • 1998
  • 통합생산시스템의 최적설계를 위하여 이의 생산공정(Manufacturing Process)과 물류시스템 (Material Handling System)은 두 가지 중요한 요소이다. 본 연구에서는 물류시스템의 성능 및 비용을 분석을 위하여 제품의 생산계획(Production Control & Scheduling), 설비배치(Layout) 및 물류시스템 (Material Handling System) 등을 고려하였다. 본 연구의 주요 목적을 통합생산시스템을 위하여 물류시스템 성능의 최적화와 경제적인 분석을 통하여 최적 물류시스템의 선택에 두고 다음 주요 내용들을 포함하였다; 1) 주요 입력 자료로서 통합생산 장비의 배치(Layout), 공정, 생산제품의 예측, 물류시스템 대안 등이 주어지고, 2) 이를 이용하여 각 물류시스템의 대안별 성능 및 비용 등을 비교 분석하고 최적 물류시스템을 선정한다. 본 연구를 위한 성능 및 비용분석을 위한 전산프로그램을 개발하고 이를 활용한 사례를 들어 보였다.

  • PDF

An intelligent consultant for material handling euqipment selection and evaluation

  • Park, Yang-Byung;Cha, Kyung-Cheon
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.79-90
    • /
    • 1995
  • The material handling equipment selection, that is a key task in the material handling system design, is a complex, difficult task, and requires a massive technical knowledge and systematic analysis. It is invaluable to justify the selected equipment model by the performance evaluation before its actual implementation. This paper presents an intelligent knowledge-based expert system called "IMESE" created by authors, for the selection and evaluation of material handling equipment model suitable for movement and storage of materials in a manufacturing facility. The IMESE is consisted of four modules: a knowledge base to select an appropriate equipment type, a multiple criteria decision making procedure to choose the most favorable commercial model of the selected equipment type, a database to store the list of commercial models of equipment types with their specifications, and simulators to evaluate the performance of the equipment model. The whole process of IMESE is executed under VP-Expert expert system environment.vironment.

  • PDF

Vibration Loads on KSR-III during Ground Transportation and Handling (KSR-III 로켓의 도로운송 및 핸들링에 의한 진동하중)

  • Chun, Young-Doo;Cho, Byoung-Gyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.330.2-330
    • /
    • 2002
  • It is conducted to analyze vibration loads on KSR-III and its major segments during their ground transportation and various handling process. These loads may be different from the real flight environment. Inadequate assessment of these loads can cause not only local damages on the rocket system but also the critical problem like flight mission failure. Therefore, transportation and handling loads must be considered during design and attenuated to ensure that the rocket structural damage does not occur. (omitted)

  • PDF

THE DESIGN ON A WHEEL BALANCER BY THE LOAD HANDLING GUIDELINES (하중을 고려한 인간 공학적 휠 밸런스 설계)

  • 양성모
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.6
    • /
    • pp.50-54
    • /
    • 1999
  • In the process of designing a wheel balancer an ergonomic evaluation model has shown that manual tire handling onthe machine was often the major problem, The root of the problem lay in the design of machine's shaft which is influenced by the opeative handling task. Several methods were reviewed for determining the correct shaft' sizes but the Revised NIOSH Equation and the Lifting Stress Calculator were found to be the only suitable models for this study. An application of these mathematical models has shoed that the shaft length and the shaft height were the most critical measurement By analyzing these conclusion s the correct shaft size parameters became clearly defined.

  • PDF

Monitoring of Rapeseed Damaged During Postharvest Handling

  • Stepniewski, A.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.539-546
    • /
    • 1996
  • The physical condition of rapeseed delivered to fat industry plants plays a significant role in the formation of the qualitative features of the raw material for oil production and, consequently , of the oil itself. Rapeseed is stored in silos , frequently for months, before it is subjected to processing. During the long storage, the conditions of the seed cover is very important, as the seed cover provides natural protection of the seed against the effect of the environment. Seeds with damaged seed cover are more easily affected by mildew, and the rate of chemical processes. Deteriorating the quality of oil contained in the cotyledons is faster in such seeds. Cracked seed covers facilitates also the growth and development of microorgaism. So as rapeseed damage occurring inthe course of harvest and the post-harvest processing have a negative effect of the quality and quantity of oil the sees contain. The study presented here was aimed at examining the typical process of purcha ing and handling of rapeseed in fat industry plants, in the aspect of the occurrence of mechanical damage to the seeds. Special attention was paid to the condition of rapeseed immediately after combine harvesting : next , the successive stages of technological handling of the seed were examined. observing the operation parameters of the particular machinery and equipment in order to identify those operations which caused deterioration in the quality of the material (sees). Seed samples were taken successively from the following the hopper, prior to cleaning , after cleaning , prior to drying , after drying, from dry rape silo. The total level of damage increased through the handling. The content of unusable contaminants had the tendency to decrease in the successive operations. though the actual values still exceeded levels permitted by standards. The study allow to indicate the operation fo postharvest technological process, which cause the most seed damage as well as gave quantita ive description of the losses occurred.

  • PDF

The Effects of Perceived Interaction Effort and Service Justice on Satisfaction with Complaint Handling and Customer Loyalty in the Internet Fashion Shopping Mall Service Recovery (인터넷 패션쇼핑몰 서비스 회복 과정의 지각된 상호 작용성과 서비스 공정성이 불평 처리 만족 및 충성도에 미치는 영향)

  • Ju, Seong-Rae;Chung, Myung-Sun
    • The Research Journal of the Costume Culture
    • /
    • v.15 no.6
    • /
    • pp.1023-1037
    • /
    • 2007
  • The focus of this study was on service recovery process of domestic internet fashion shopping mall, the purposes of this study were to extract perceived interaction effort and service justice with the recovery factors according to service failure by literature review, and to empirically examine the effect this variables on customer satisfaction with complaint handling and loyalty. The questionnaires was administered to 256 internet shopping mall customer, who has experiences of dissatisfaction and complaining behavior after buying fashion products. The data was analyzed by Cronbach's a, confirmatory factor analysis, correlation analysis, and structural equation modeling using LISREL 8.30 program. The results were as follows. First, perceived interaction partly affected serviced justice consumer. Interaction effort on the part of consumer negatively affected interactional justice, but didn't affected distributive justice and procedural justice. However interaction effort on the part of shopping mall positively affected all justice. Second, distributive, procedural and interactive justice positively affected customer satisfaction with complaint handling and loyalty. Finally, customer satisfaction with complaint handling positively affected customer loyalty. The implications of the research and directions for future researchers were discussed.

  • PDF

Multi-objective optimization of double wishbone suspension of a kinestatic vehicle model for handling and stability improvement

  • Bagheri, Mohammad Reza;Mosayebi, Masoud;Mahdian, Asghar;Keshavarzi, Ahmad
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.633-638
    • /
    • 2018
  • One of the important problems in the vehicle design is vehicle handling and stability. Effective parameters which should be considered in the vehicle handling and stability are roll angle, camber angle and scrub radius. In this paper, a planar vehicle model is considered that two right and left suspensions are double wishbone suspension system. For a better analysis of the suspension geometry, a kinestatic model of vehicle is considered which instantaneous kinematic and statics relations are analyzed simultaneously. In this model, suspension geometry is considered completely. In order to optimum design of double wishbones suspension system, a multi-objective genetic algorithm is applied. Three important parameters of suspension including roll angle, camber angle and scrub radius are taken into account as objective functions. Coordinates of suspension hard points are design variables of optimization which optimum values of them, corresponding to each optimum point, are obtained in the optimization process. Pareto solutions for three objective functions are derived. There are important optimum points in these Pareto solutions which each point represents an optimum status in the model. In other words, corresponding to any optimal point, a specific geometric position is determined for the suspension hard points. Each of the obtained points in the Pareto optimization can be selected for a special design purpose by designer to create an optimum condition in the vehicle handling and stability.

Design Process of Robotic Cell and Layout Design Tool (로봇 셀 설계절차와 레이아웃 작업 지원 도구)

  • Guk, Geum-Hwan;Park, Jun-Mo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1379-1389
    • /
    • 2000
  • In this study, a design process of robotic cell is presented. This paper focuses only on the automation of workpiece handling with robot. The presented design process enables us to analyze effectiv ely the original production system and to redesign it as an optimum production system with robots. An original production system is analyzed with respect to its economical and technological requirements for automation. If automation of the given production system is feasible, the conceptual design for automation is firstly derived. Next, the detail design is derived for the optimum conceptual design. Finally, an optimum system solution is determined after the economical and technical evaluation of all the derived detail designs. The all specifications of each element of the redesigned production system and its layout are determined at the detail design phase. This paper shows a low cost supporting tool for layout design of robotic cell with SCARA type robots.