• Title/Summary/Keyword: Handling

Search Result 5,369, Processing Time 0.036 seconds

Determination of the Optimal Handle Position for Cartons through the Evaluation of Youth User's Preferences (청년층 사용자 선호도 평가를 통한 박스손잡이의 최적위치 설정)

  • Jung, In-Ju;Jung, Hwa-S.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.49-56
    • /
    • 2007
  • Handles on objects are very important to increase the safety and efficiency of manual handling of people who use them. In this study, four different prototype cartons combined with auxiliary handles were designed to determine the optimal handle position of cartons through the evaluation of user preferences. Twenty male students are participated in the experiment. Likert-5 point summated rating method was applied to evaluate the user preferences for provided handles of the carton among upper, middle, and lower position under the four different sizes and materials handling conditions(carrying positions). The results show that the subjects preferred upper part of the handle on the small cartons regardless of the carrying positions while upper and middle parts of the handle on the big cartons for handling above the waist height were preferred. An optimal handle position depending on the different sizes of carton and the different carrying positions were recommended based on the results of evaluation. It is thus recommended that the cartons provide handles on its relevant position depending on the size and materials handling condition to reduce the musculoskeletal stress and in turn to increase the user satisfaction.

Analysis of Handling Qualities for Smart Unmanned Aerial Vehicle in Helicopter Flight Mode (스마트 무인기의 회전익 모드 비행성 분석)

  • Lee, Jang-Ho;Kim, Eung-Tai
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.2
    • /
    • pp.185-192
    • /
    • 2005
  • The aim of this paper is to analyze handling qualities of tiltrotor aircraft(TR-S4) in helicopter flight mode including hovering and forward flight. Analysis of handling qualities is composed of aircraft response to control inputs that effect on stability and controllability. In short term response analysis, bandwidth is the critical parameter for small amplitude motions since it relates to the ability of a pilot to crisply start and stop maneuver. The handling qualities of TR-S4 in helicopter mode are analyzed with a SAS and an attitude controller and are satisfied level 1 in almost criteria with simulation of TR-S4 6-DOF nonlinear model.

  • PDF

Prevalence in Food Safety Behaviors of Pregnant Women and Their Associated Factors

  • Cha, Myeong-Hwa
    • Journal of Community Nutrition
    • /
    • v.7 no.3
    • /
    • pp.141-148
    • /
    • 2005
  • Food handling practices playa key role in the prevalence of food-borne illness. Despite the fact that pregnant women are high risk groups for food-borne disease, little is known about their actual food handling practices at home. The objective of this study was to investigate behaviors regarding food-related hygienic practices of pregnant women. The questionnaire included questions in five major areas : personal hygiene ; adequate cooking ; avoiding cross contamination ; keeping food at safe temperatures ; and avoiding food from unsafe sources. Analysis of 488 questionnaires showed the respondents were unaware of the importance of safe food handling practices. Especially, pregnant women in our study should be encouraged to be careful about either risk of adequate cooking $(2.08\pm0.66)$ and keeping foods at safe temperatures $(2.69\pm0.63)$. Residency and number of children were consistent independent predictors of food handling behaviors. Previous food safety education also was found to have significant effect on food handling practices. TV news and newspapers were considered the most usable sources of food safety information by respondents. The behaviors identified in this study represent ones of particular importance for high-risk populations, like pregnant women. These population characteristics identified in this study could be incorporated in development of food safety educational programs for pregnant women being vulnerable on food-borne illness. Our results could have implications for the design of effective food safety educational efforts. This study indicates the need for continued and improved food safety education and for enforcing systematic food safety education for pregnant women.

A Study on Analysis and Prevention for Cargo Handling Accidents in Incheon Port (인천항 항만하역 재해분석 및 예방대책에 관한 연구)

  • Nam, Young-Woo;Kim, Young-Min;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.3
    • /
    • pp.27-36
    • /
    • 2006
  • The port, differently from general working place, is a closed area to execute security, customs, and quarantine procedures. The loading and unloading is being done differently by cargoes, ships, berths, and equipments. To load and unload a lot of equipments and different types of labor are required, in which work flow is very complicated. As above mentioned the port is very unique and deteriorated working place including danger. The purpose of this thesis is to propose ways to analyze and establish the preventive measure for cargo handling accidents in port. We have collected 923 accidents happened at Incheon Port during the period from 1994 to 2003. And to analyze and establish the preventive measure we have employed an advanced 6sigma DMAIC technology presently in spotlight as the best tool for management innovation. For the purpose of effective safety management of cargo handling in port, this thesis will help to revise and establish the law, system, standard, and standard working manual with respect to the port loading and unloading system. Now frequency of cargo handling accidents in port is highest for the second time among all industries, so we proposed the new safety management system to substitute port safety committee and to take full charge of safety in Ministry of Maritime Affairs and Fisheries.

Perception of Ship's Movement in Docking Maneuvering using Ship-Handling Simulator

  • Arai, Yasuo;Minamiya, Taro;Okuda, Shigeyuki
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.3-10
    • /
    • 2006
  • Recently it is coming to be hish reality on visual system in ship-handling simulator depending on the technical development of 3D computer graphics. Even with high reality, it is possible that visual information presented seafarers through screen or display is not equivalent to the real world. In docking maneuvering, visual targets or obstructs are sighted close to ship's operator or within few hundred meters, so it might be possible to affect visual information such as the difference between both eyes' and single eye's visual sight. Because it is not possible to perceive of very slow ship's movement by visual in case of very large vessels, so the Doppler Docking SONAR and/or Docking Speed and Distance Measurement Equipment were developed and applied for safety docking maneuvering. By the way, the simulator training includes the ship's maneuvering training in docking, but in Ship-handling Simulator and also onboard, there are some limitations of perception of ship's movement with visual information. In this paper, perception of ship's movement with visual system in Ship-handling Simulator and competition of performances of visual systems that are conventional screen type with Fixed Eye-point system and Mission Simulator. We got some conclusions not only on the effectiveness for visual system but also on the human behavior in docking maneuver.

  • PDF

ANALYSIS PROCESS APPLIED TO A HIGH STIFFNESS BODY FOR IMPROVED VEHICLE HANDLING PROPERTIES

  • Kim, K.C.;Kim, C.M.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.629-636
    • /
    • 2007
  • This paper describes the process of analyzing vehicle stiffness in terms of frequency band in order to improve vehicle handling. Vehicle handling and ride comfort are highly related to the systems such as suspension, seat, steering, and the car body design. In existing analytical processes, the resonance frequency of a car body is designed to be greater than 25 Hz in order to increase the stiffness of the body against idle vibration. This paper introduces a method for using a band with a frequency lower than 20 Hz to analyze how stiffness affects vehicle handling. Accordingly, static stiffness analysis of a 1g cornering force was conducted to minimize the deformation of vehicle components derived from a load on parts attached to the suspension. In addition, this technology is capable of achieving better performance than older technology. Analysis of how body attachment stiffness affects the dynamic stiffness of a bushing in the attachment parts of the suspension is expected to lead to improvements with respect to vehicle handling and road noise. The process of developing a car body with a high degree of stiffness, which was accomplished in the preliminary stage of this study, confirms the possibility of improving the stability performance and of designing a lightweight prototype car. These improvements can reduce the time needed to develop better vehicles.

An Implementation of Task Switching and Interrupt Handling Mechanisms of OSEK Operating System based on ARM Processor (ARM 프로세서를 기반으로 한 OSEK 운영체제의 태스크 전환 및 인터럽트 핸들링 메커니즘 구현)

  • Rim, Seong-Rak;Kwon, O-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1947-1953
    • /
    • 2011
  • OSEK/VDX is a joint project aiming at an industry standard for ECUs in vehicles and OSEK OS is a real-time operating system that meets OSEK/VDX specifications. In this paper, we suggest an implementation of task switching and interrupt handling mechanisms of OSEK operating system based on ARM processors. Considering the requirements of OSEK OS and characteristics of ARM processor, we have designed task switching and interrupt handling mechanisms. For evaluating the validation of the suggested mechanisms, we have checked the functional correctness on an experimental embedded board with ARM processor and calculated the time of task switching and interrupt handling.

Multi-objective optimization of double wishbone suspension of a kinestatic vehicle model for handling and stability improvement

  • Bagheri, Mohammad Reza;Mosayebi, Masoud;Mahdian, Asghar;Keshavarzi, Ahmad
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.633-638
    • /
    • 2018
  • One of the important problems in the vehicle design is vehicle handling and stability. Effective parameters which should be considered in the vehicle handling and stability are roll angle, camber angle and scrub radius. In this paper, a planar vehicle model is considered that two right and left suspensions are double wishbone suspension system. For a better analysis of the suspension geometry, a kinestatic model of vehicle is considered which instantaneous kinematic and statics relations are analyzed simultaneously. In this model, suspension geometry is considered completely. In order to optimum design of double wishbones suspension system, a multi-objective genetic algorithm is applied. Three important parameters of suspension including roll angle, camber angle and scrub radius are taken into account as objective functions. Coordinates of suspension hard points are design variables of optimization which optimum values of them, corresponding to each optimum point, are obtained in the optimization process. Pareto solutions for three objective functions are derived. There are important optimum points in these Pareto solutions which each point represents an optimum status in the model. In other words, corresponding to any optimal point, a specific geometric position is determined for the suspension hard points. Each of the obtained points in the Pareto optimization can be selected for a special design purpose by designer to create an optimum condition in the vehicle handling and stability.

Manual Handling in Aged Care: Impact of Environment-related Interventions on Mobility

  • Coman, Robyn L.;Caponecchia, Carlo;McIntosh, Andrew S.
    • Safety and Health at Work
    • /
    • v.9 no.4
    • /
    • pp.372-380
    • /
    • 2018
  • The manual handling of people (MHP) is known to be associated with high incidence of musculoskeletal disorders for aged care staff. Environment-related MHP interventions, such as appropriate seated heights to aid sit-to-stand transfers, can reduce staff injury while improving the patient's mobility. Promoting patient mobility within the manual handling interaction is an endorsed MHP risk control intervention strategy. This article provides a narrative review of the types of MHP environmental controls that can improve mobility, as well as the extent to which these environmental controls are considered in MHP risk management and assessment tools. Although a range of possible environmental interventions exist, current tools only consider these in a limited manner. Development of an assessment tool that more comprehensively covers environmental strategies in MHP risk management could help reduce staff injury and improve resident mobility through auditing existing practices and guiding the design of new and refurbished aged care facilities.

Upper Wafer Handling Module Design and Control for Wafer Hybrid Bonding (Wafer Hybrid Bonding을 위한 Upper Wafer Handling 모듈 설계 및 제어)

  • Kim, Tae Ho;Mun, Jea Wook;Choi, Young Man;An, Dahoon;Lee, Hak-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.142-147
    • /
    • 2022
  • After introducing Hybrid Bonding technology into image sensors using stacked sensors and image processors, large quantity production became possible. As a result, it is currently used in most of the CMOS image market in smartphones and other image-based devices worldwide, and almost all stacked CIS manufacturing sites have focused on miniaturization using hybrid bonding. In this study, an upper wafer handling module for Wafer to Wafer Hybrid Bonding developed to increase the alignment and precision between wafers when wafer bonding. The module was divided two parts to reduce error of both the alignment and degree of precision during wafer bonding. Wafer handling module developed both new Tip/Tilt system controlling θx,θy of upper wafer and striker to push upper wafer. Based on this, it was confirmed through the stability evaluation that the upper wafer handling module can be controlled without any problem during W2W hybrid bonding.