• Title/Summary/Keyword: Handle shape

Search Result 158, Processing Time 0.025 seconds

Shape Design Sensitivity Analysis for Interface Problem in Axisymmetric Elasticity

  • Choi, Joo-Ho;Lee, Boo-Youn;Han, Jung-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.197-206
    • /
    • 2000
  • A boundary integral equation method in the shape design sensitivity analysis is developed for the elasticity problems with axisymmetric non-homogeneous bodies. Functionals involving displacements and tractions at the zonal interface are considered. Sensitivity formula in terms of the interface shape variation is then derived by taking derivative of the boundary integral identity. Adjoint problem is defined such that displacement and traction discontinuity is imposed at the interface. Analytic example for a compound cylinder is taken to show the validity of the derived sensitivity formula. In the numerical implementation, solutions at the interface for the primal and adjoint system are used for the sensitivity. While the BEM is a natural tool for the solution, more generalization should be made since it should handle the jump conditions at the interface. Accuracy of the sensitivity is evaluated numerically by the same compound cylinder problem. The endosseous implant-bone interface problem is considered next as a practical application, in which the stress value is of great importance for successful osseointegration at the interface. As a preliminary step, a simple model with tapered cylinder is considered in this paper. Numerical accuracy is shown to be excellent which promises that the method can be used as an efficient and reliable tool in the optimization procedure for the implant design. Though only the axisymmetric problem is considered here, the method can be applied to general elasticity problems having interface.

  • PDF

Generation of 3 Dimensional Image Model from Multiple Digital Photographs (다중 디지털 사진을 이용한 3차원 이미지 모델 생성)

  • 정태은;석정민;신효철;류재평
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1634-1637
    • /
    • 2003
  • Any given object on the motor-driven turntable is pictured from 8 to 72 different views with a digital camera. 3D shape reconstruction is performed with the integrated software called by Scanware from these multiple digital photographs. There are several steps such as configuration, calibration, capturing, segmentation, shape creation, texturing and merging process during the shape reconstruction process. 3D geometry data can be exported to cad data such as Autocad input file. Also 3D image model is generated from 3D geometry and texture data, and is used to advertise the model in the internet environment. Consumers can see the object realistically from wanted views by rotating or zooming in the internet browsers with Scanbull spx plug-in. The spx format allows a compact saving of 3D objects to handle or download. There are many types of scan equipments such as laser scanners and photogrammetric scanners. Line or point scan methods by laser can generate precise 3D geometry but cannot obtain color textures in general. Reversely, 3D image modeling with photogrammetry can generate not only geometries but also textures from associated polygons. We got various 3D image models and introduced the process of getting 3D image model of an internet-connected watchdog robot.

  • PDF

A Study On Shape Design of Implant Systems For Bone Fracture Operations By Using Finite Element Method (유한요소법을 이용한 골절치료용 임플란트 시스템 형상설계에 관한 연구)

  • Cho, Ji-Hyun;Seo, Keum-Hee;Seo, Tae-il
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.425-432
    • /
    • 2012
  • This paper investigates shape design processes of two implant systems for bone fracture treatment ; Bone plate and Interlocking nail system. These systems can directly fix fractured human bones by surgical operations. The bone plates consist of various shaped plates and implant screws for fixation of fractured human bones with various manual instruments allowing to handle them. The material corresponds to titanium alloy Ti6Al4V because it is harmless material for human body as well as significantly rigid. This system has to be suitably rigid as well as manually bended in orthopedic surgery operations. The Interlocking nail system is a kind of nail implanted inside fractured human bones. The shapes of these systems have to be suitably designed in order to endure various loads as well as avoid any damages. If various shaped prototypes would be fabricated and tested to design the optimal shapes, optimal shapes could be obtained but very long time and expensive costs must be required. In this paper finite element method was applied into these systems. Under various boundary conditions a series of structural analysis was conducted by using ANSYS. Finally important shape factors could be determined on the basis of the analysis results.

New Trends of Non-Traditional Machining Technology (특수가공기술의 최신동향)

  • 김정두
    • Journal of the Korean Professional Engineers Association
    • /
    • v.34 no.2
    • /
    • pp.10-13
    • /
    • 2001
  • Workpiece materials may be relatively easy to machine by traditional methods but workpiece geometry also may be a constraint. Many shapes that are geometrically difficult to handle conventionally may be candidates for nontraditional processes. Nontraditional processes provide new opportunities for product design innovation and productivity improvements. Difficult-to-machine materials of geometric shapes difficult o produce with traditional equipment and tooling, may often be easily and cost effectively machined using nontraditional processes. Notraditional machining processes are relative newcomers o the manufacturing arena. Nontraditional chemical solutions, or even electrolytic current as the working medium rather than a conventional cutting tool or abrasive to remove or shape materials.

  • PDF

Incremental Feature Recognition from Feature-based Design Model (설계특징형상으로부터 가공특징형상 추출)

  • 이재열;김광수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.737-742
    • /
    • 1994
  • In this paper , we propose an incremental approach for recognizing a class of machining features from a featurebased design model as a part design proceeds, utilizing various information such as nominal geometry, design intents, and design feature characteristics. The proposed apptroach can handle complex intersecting features and protrusion features designed on oblique faces. The class of recognized volumetric machining features can be expressed as Material Removal Shape Element Volumes (MRSEVs), a PDES/STEP-based library of machining features.

  • PDF

Energy band structure calculation of crystalline solids using meshfree methods (무요소법을 이8한 결정고체의 에너지 띠 구조 계산)

  • 전석기;임세영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.623-628
    • /
    • 2002
  • A meshfree formulation for the calculation of energy band structure is presented. The conventional meshfree shape function is modified to handle the periodicity of Bravais lattice, and applied to the calculation of real-space electronic-band structure. Numerical examples include the Kronig-Penney model potential and the empirical pseudopotentials of diamond and zinc-blonde semiconductors. Results demonstrate that the meshfree method be a promising one as a real-space technique for the calculations of diverse physical band structures.

  • PDF

The Effects The Type of Canes-Handle Affects in Recovering-Balance of Hemiplegic patients (지팡이 손잡이 형태가 편마비 환자의 균형 회복에 미치는 영향)

  • Lee, Sang-Yeol;Lee, Myoung-Hee;Park, Min-Chull;Han, Jin-Tae;Kweon, Oh-Hyun;Bae, Sung-Soo
    • The Journal of Korean Physical Therapy
    • /
    • v.20 no.4
    • /
    • pp.7-13
    • /
    • 2008
  • Purpose: We compared T-type and I-type canes on postural balance in 28 hemiplegic patients. Methods: Subjects were allocated randomly into two groups: a T-shape cane group (n=14) and an I-shape cane group (n=14). Before the test, subjects were trained by a physical therapist to walk with a cane for 6 weeks. The Main Outcome Measures were measured as maximal sway velocity, sway path, sway area, and partial weight bearing using a Balance Performance Monitor (BPM) and ambulation velocity using a 'Timed up and go test'. We also measured the maximal ambulation velocity. Results: The distribution of weight bearing on the affected side without the cane was 35% in the I-shape cane group and 36% in the T-shape cane group. After training, weight bearing on the affected side increased by 45% in the I-shape cane group and 40% in the T-shape cane group. With the cane held in the hand, weight bearing on the affected side in the T-shape cane group decreased by 3%. Conclusion: The I-shaped cane increased static standing balance, including hemiplegic side weight bearing. Therefore, I-shape canes can improve the balance of hemiplegic patients.

  • PDF

Healing of CAD Model Errors Using Design History (설계이력 정보를 이용한 CAD모델의 오류 수정)

  • Yang J. S.;Han S. H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.4
    • /
    • pp.262-273
    • /
    • 2005
  • For CAD data users, few things are as frustrating as receiving CAD data that is unusable due to poor data quality. Users waste time trying to get better data, fixing the data, or even rebuilding the data from scratch from paper drawings or other sources. Most related works and commercial tools handle the boundary representation (B-Rep) shape of CAD models. However, we propose a design history?based approach for healing CAD model errors. Because the design history, which covers the features, the history tree, the parameterization data and constraints, reflects the design intent, CAD model errors can be healed by an interdependency analysis of the feature commands or of the parametric data of each feature command, and by the reconstruction of these feature commands through the rule-based reasoning of an expert system. Unlike other B Rep correction methods, our method automatically heals parametric feature models without translating them to a B-Rep shape, and it also preserves engineering information.

Optimization of Vacuum Cleaner Handle Using Approximate Model and NSGA-II (근사 모델과 NSGA-II를 이용한 진공청소기 손잡이 근사최적설계)

  • Yun, Minro;Lee, Jongsoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.30-35
    • /
    • 2017
  • The major parts of a vacuum cleaner are molded. The vacuum cleaner works in multi-load conditions. Therefore, the designer needs to optimize the structure and injection molding conditions simultaneously. Here, the main factor of design is the rib shape and thickness. The greater the rib thickness, the greater the stiffness of the structure. However, it causes an increase in weight. On the other hand, the lower the rib thickness, the greater the increase in the injection pressure. However, the weight will be reduced. Therefore, the designer needs to optimize the rib shape and thickness for structure stiffness and injection molding. In order to solve this problem, we propose an optimization method using D.O.E and a response surface model, which is a multi-objective optimization method using the multi-objective genetic algorithm.

Dynamic analysis for delaminated composites using DKQ concept based on higher-order zig-zag theory (고차 지그재그 모델을 이용한 다중 층간 분리부가 내재한 복합재 평판의 동적 해석)

  • 오진호;조맹효;김준식
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.71-74
    • /
    • 2002
  • A higher-order zig-zag theory is developed to refine the predictions of natural frequency and mode shape of laminated composite plates with multiple delaminations. By imposing top and bottom surface transverse shear stress-free and interface continuity conditions of transverse shear stresses including delaminated interfaces, the displacement field with minimal degree-of-freedoms are obtained. This displacement field can systematically handle the number, shape, size, and locations of delaminations. Through the dynamic version of variational approach, the dynamic equilibriums and variationally consistent boundary conditions are obtained. Through the numerical example of natural frequency analysis, the accuracy and efficiency of present theory are demonstrated. The present theory is suitable as an efficient tool to analyze the static and dynamic behavior of the composite plates with multiple delaminations.

  • PDF