• Title/Summary/Keyword: Hand-based User Interface

Search Result 126, Processing Time 0.026 seconds

A Study on Virtual Reality Techniques for Immersive Traditional Fairy Tale Contents Production (몰입형 전래동화 콘텐츠 제작을 위한 가상현실 기술에 대한 연구)

  • Jeong, Kisung;Han, Seunghun;Lee, Dongkyu;Kim, Jinmo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.3
    • /
    • pp.43-52
    • /
    • 2016
  • This paper is to study techniques of a virtual reality to maximize the depth of the users' immersion based on differentiated interactive contents using korean traditional fairy tale. In order to increase more interests in korean traditional fairy tale, we produce a interactive 3D contents and propose a new approach to a system designing applying a virtual realities such as HMD, Leap motion. First, using Korean traditional fairy tale, we generate interactive contents consisting of scenes intensifying user's tensions while interaction of game process. Based on the interactive contents generated, we design scene generation using Oculus HMD, the gaze based input processes and a hand interface using Leap motion, in order to provide a multi dimensional scene transmission and an input process method to intensify the sense of the reality. We will verify through diverse tests whether the proposed virtual reality contents based on a technique of an input process will actually intensify the immersion in the virtual reality or not while minimizing the motion sickness of the users.

Methodologies for Enhancing Immersiveness in AR-based Product Design (증강현실 기반 제품 디자인의 몰입감 향상 기법)

  • Ha, Tae-Jin;Kim, Yeong-Mi;Ryu, Je-Ha;Woo, Woon-Tack
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.2 s.314
    • /
    • pp.37-46
    • /
    • 2007
  • In this paper, we propose technologies for enhancing the immersive realization of virtual objects in AR-based product design. Generally, multimodal senses such as visual/auditory/tactile feedback are well known as a method for enhancing the immersion in case of interaction with virtual objects. By adapting tangible objects we can provide touch sensation to users. A 3D model of the same scale overlays the whole area of the tangible object so the marker area is invisible. This contributes to enhancing immersion. Also, the hand occlusion problem when the virtual objects overlay the user's hands is partially solved, providing more immersive and natural images to users. Finally, multimodal feedback also creates better immersion. In our work, both vibrotactile feedback through page motors, pneumatic tactile feedback, and sound feedback are considered. In our scenario, a game-phone model is selected, by way of proposed augmented vibrotactile feedback, hands occlusion-reduced visual effects and sound feedback are provided to users. These proposed methodologies will contribute to a better immersive realization of the conventional AR system.

Real-Time Stereoscopic Visualization of Very Large Volume Data on CAVE (CAVE상에서의 방대한 볼륨 데이타의 실시간 입체 영상 가시화)

  • 임무진;이중연;조민수;이상산;임인성
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.6
    • /
    • pp.679-691
    • /
    • 2002
  • Volume visualization is an important subarea of scientific visualization, and is concerned with techniques that are effectively used in generating meaningful and visual information from abstract and complex volume datasets, defined in three- or higher-dimensional space. It has been increasingly important in various fields including meteorology, medical science, and computational fluid dynamics, and so on. On the other hand, virtual reality is a research field focusing on various techniques that aid gaining experiences in virtual worlds with visual, auditory and tactile senses. In this paper, we have developed a visualization system for CAVE, an immersive 3D virtual environment system, which generates stereoscopic images from huge human volume datasets in real-time using an improved volume visualization technique. In order to complement the 3D texture-mapping based volume rendering methods, that easily slow down as data sizes increase, our system utilizes an image-based rendering technique to guarantee real-time performance. The system has been designed to offer a variety of user interface functionality for effective visualization. In this article, we present detailed description on our real-time stereoscopic visualization system, and show how the Visible Korean Human dataset is effectively visualized on CAVE.

An Implementation of Dynamic Gesture Recognizer Based on WPS and Data Glove (WPS와 장갑 장치 기반의 동적 제스처 인식기의 구현)

  • Kim, Jung-Hyun;Roh, Yong-Wan;Hong, Kwang-Seok
    • The KIPS Transactions:PartB
    • /
    • v.13B no.5 s.108
    • /
    • pp.561-568
    • /
    • 2006
  • WPS(Wearable Personal Station) for next generation PC can define as a core terminal of 'Ubiquitous Computing' that include information processing and network function and overcome spatial limitation in acquisition of new information. As a way to acquire significant dynamic gesture data of user from haptic devices, traditional gesture recognizer based on desktop-PC using wire communication module has several restrictions such as conditionality on space, complexity between transmission mediums(cable elements), limitation of motion and incommodiousness on use. Accordingly, in this paper, in order to overcome these problems, we implement hand gesture recognition system using fuzzy algorithm and neural network for Post PC(the embedded-ubiquitous environment using blue-tooth module and WPS). Also, we propose most efficient and reasonable hand gesture recognition interface for Post PC through evaluation and analysis of performance about each gesture recognition system. The proposed gesture recognition system consists of three modules: 1) gesture input module that processes motion of dynamic hand to input data 2) Relational Database Management System(hereafter, RDBMS) module to segment significant gestures from input data and 3) 2 each different recognition modulo: fuzzy max-min and neural network recognition module to recognize significant gesture of continuous / dynamic gestures. Experimental result shows the average recognition rate of 98.8% in fuzzy min-nin module and 96.7% in neural network recognition module about significantly dynamic gestures.

Image Processing Algorithms for DI-method Multi Touch Screen Controllers (DI 방식의 대형 멀티터치스크린을 위한 영상처리 알고리즘 설계)

  • Kang, Min-Gu;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.3
    • /
    • pp.1-12
    • /
    • 2011
  • Large-sized multi-touch screen is usually made using infrared rays. That is because it has technical constraints or cost problems to make the screen with the other ways using such as existing resistive overlays, capacitive overlay, or acoustic wave. Using infrared rays to make multi-touch screen is easy, but is likely to have technical limits to be implemented. To make up for these technical problems, two other methods were suggested through Surface project, which is a next generation user-interface concept of Microsoft. One is Frustrated Total Internal Reflection (FTIR) which uses infrared cameras, the other is Diffuse Illumination (DI). FTIR and DI are easy to be implemented in large screens and are not influenced by the number of touch points. Although FTIR method has an advantage in detecting touch-points, it also has lots of disadvantages such as screen size limit, quality of the materials, the module for infrared LED arrays, and high consuming power. On the other hand, DI method has difficulty in detecting touch-points because of it's structural problems but makes it possible to solve the problem of FTIR. In this thesis, we study the algorithms for effectively correcting the distort phenomenon of optical lens, and image processing algorithms in order to solve the touch detecting problem of the original DI method. Moreover, we suggest calibration algorithms for improving the accuracy of multi-touch, and a new tracking technique for accurate movement and gesture of the touch device. To verify our approaches, we implemented a table-based multi touch screen.

A Study on Public Interest-based Technology Valuation Models in Water Resources Field (수자원 분야 공익형 기술가치평가 시스템에 대한 연구)

  • Ryu, Seung-Mi;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.177-198
    • /
    • 2018
  • Recently, as economic property it has become necessary to acquire and utilize the framework for water resource measurement and performance management as the property of water resources changes to hold "public property". To date, the evaluation of water technology has been carried out by feasibility study analysis or technology assessment based on net present value (NPV) or benefit-to-cost (B/C) effect, however it is not yet systemized in terms of valuation models to objectively assess an economic value of technology-based business to receive diffusion and feedback of research outcomes. Therefore, K-water (known as a government-supported public company in Korea) company feels the necessity to establish a technology valuation framework suitable for technical characteristics of water resources fields in charge and verify an exemplified case applied to the technology. The K-water evaluation technology applied to this study, as a public interest goods, can be used as a tool to measure the value and achievement contributed to society and to manage them. Therefore, by calculating the value in which the subject technology contributed to the entire society as a public resource, we make use of it as a basis information for the advertising medium of performance on the influence effect of the benefits or the necessity of cost input, and then secure the legitimacy for large-scale R&D cost input in terms of the characteristics of public technology. Hence, K-water company, one of the public corporation in Korea which deals with public goods of 'water resources', will be able to establish a commercialization strategy for business operation and prepare for a basis for the performance calculation of input R&D cost. In this study, K-water has developed a web-based technology valuation model for public interest type water resources based on the technology evaluation system that is suitable for the characteristics of a technology in water resources fields. In particular, by utilizing the evaluation methodology of the Institute of Advanced Industrial Science and Technology (AIST) in Japan to match the expense items to the expense accounts based on the related benefit items, we proposed the so-called 'K-water's proprietary model' which involves the 'cost-benefit' approach and the FCF (Free Cash Flow), and ultimately led to build a pipeline on the K-water research performance management system and then verify the practical case of a technology related to "desalination". We analyze the embedded design logic and evaluation process of web-based valuation system that reflects characteristics of water resources technology, reference information and database(D/B)-associated logic for each model to calculate public interest-based and profit-based technology values in technology integrated management system. We review the hybrid evaluation module that reflects the quantitative index of the qualitative evaluation indices reflecting the unique characteristics of water resources and the visualized user-interface (UI) of the actual web-based evaluation, which both are appended for calculating the business value based on financial data to the existing web-based technology valuation systems in other fields. K-water's technology valuation model is evaluated by distinguishing between public-interest type and profitable-type water technology. First, evaluation modules in profit-type technology valuation model are designed based on 'profitability of technology'. For example, the technology inventory K-water holds has a number of profit-oriented technologies such as water treatment membranes. On the other hand, the public interest-type technology valuation is designed to evaluate the public-interest oriented technology such as the dam, which reflects the characteristics of public benefits and costs. In order to examine the appropriateness of the cost-benefit based public utility valuation model (i.e. K-water specific technology valuation model) presented in this study, we applied to practical cases from calculation of benefit-to-cost analysis on water resource technology with 20 years of lifetime. In future we will additionally conduct verifying the K-water public utility-based valuation model by each business model which reflects various business environmental characteristics.