• Title/Summary/Keyword: Hand-arm system

Search Result 108, Processing Time 0.023 seconds

A system measuring the functional dimension of the hand and arm (손/팔의 기능적 치수 측정시스템)

  • 이경태;강신길;박재희
    • Proceedings of the ESK Conference
    • /
    • 1996.10a
    • /
    • pp.219-224
    • /
    • 1996
  • By integrating the wired-glove and the position sensor using the magnetic fields, we developed the system which could measure the functional dimension of the hand and arm of the human. Magnetic position sensor traces the position and orientation of the arm while the wired-glove measures 18 phalangeal joint angles(including abduction between fingers, pitch and yaw of the wiist). The system could be used to monitor and quantify the functional dimension of the hand and arm and also could be used to test the product usability where the hand motion is important. Another important application lies in determining the degree of paralysis.

  • PDF

Measurement of Grip and Feed Force in the Evaluation of Hand-arm Vibration (수완계 진동 평가에 영향을 미치는 작용력의 측정)

  • 최석현;장한기
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.1038-1042
    • /
    • 2003
  • In order to evaluate dynamic impedance of a hand-arm system it is necessary to measure the hand-transmitted vibration and the reaction force at the same time while gripping the vibrating handle. In the study a device was developed to measure both the vibration and the force. The device consists of a measurement handle with four strain gauge and two accelerometers and a PC based control system with a program for the signal processing and evaluation of the hand-transmitted vibration and reaction force. The handle was installed on the vibration shaker so that it can move by the generated signal from the control system. As an application of the system dynamic reaction force and the frequency weighted acceleration at the handle attached to the shaker were measured at various grip force and feed force. This system will be very useful in the area of impedance measurement and the evaluation of performance of anti-vibration gloves.

  • PDF

Measurement of hand motion and tremor of camcorder using a wired-glove system (사이버글로브를 이용한 손동작과 캠코더의 흔들림 측정)

  • 박경수;임치환;이석우;이경태;박재희
    • Proceedings of the ESK Conference
    • /
    • 1997.04a
    • /
    • pp.281-285
    • /
    • 1997
  • We developed the system which could trace the hand and arm motion to test the product usability by integrating a wired-glove and a magnetic position sensing system. The magnetic position sensing system traces the position and orientation of the arm while the sired-glove measures 18 phal angeal joint angles. A case study was performed on two different camcorders in weight. The heavier camcorder was more stable than the lighter one. Also the recording task is more stable than the zoom-in and zoom-out tasks. This system could be used to monitor and quantify the hand and arm motion in real time and also could be used to test the product usability where the hand motion is important.

  • PDF

Vibration Damping Characteristics of the Powered Hand Tools on Hand-Arm System (손-팔 시스템에 전달되는 전동수공구의 진동감쇠 특성)

  • 장규표;김길주;이동춘
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.52
    • /
    • pp.43-52
    • /
    • 1999
  • In this study, the vibration damping characteristics of the powered hand tools transmitted in hand-arm system were examined and compared. The types of powered tools for the experiment are general typed drill, impact drill, grinder, and wire brush. To analyze the characteristics of vibration damping, the magnitude of acceleration of vibration on X, Y, and Z direction at tool, hand, wrist, and the joint between forearm and upper arm were measured respectively. The results indicated that impact drill generated the highest value of acceleration of vibration among the four types of tools used in the experiments. The highest value of the amount of acceleration of vibration was found in the direction of Y. And the amount of acceleration of vibration was significantly affected by the type of tool, type of work, and pushing forces. As become the more distant from the tool, the smaller the amount of acceleration of vibration. Also, the bigger the pushing force at the tool, the higher the acceleration of vibration.

  • PDF

A Myological Study of Hand Great Yin Lung Meridian Muscle System and Comparison with Deep Front Line in Anatomical Train (수태음폐경근의 근육학적 고찰 및 심부상지전방선과의 비교)

  • Kim, Myungkwan;Kim, Kyungmin;Jeon, Juhyun
    • Journal of Haehwa Medicine
    • /
    • v.24 no.2
    • /
    • pp.17-24
    • /
    • 2016
  • Objectives : This study was aimed to widen range of comprehesion about meridian muscle system through myological study of meridian muscle system and comparison with deep front arm line in anatomical train Methods : We have studied the similarity and difference between Hand Great Yin Lung Meridian Muscle System and Deep Front Line in Anatomical Train through Principles of Meridians & Acupoints, publications about myology, Anatomical trains. Results : I. Like another advanced studies, muscular system of hand great yin showed similarity to deep front line in anatomical train. II. It is considered that muscular system of hand great yin contains Musculus abductor pollicis brevis, Musculus extensor hallucis longus, Musculus brachioradialis, Musculus biceps brachii, Musculus subclavius, Musculus pectoralis major. III. Comparing muscular system of hand great yin to deep front arm line in anatomical train it showed similarity to part of muscles and pathological symptoms. But it showed difference to part of muscles and pathological symptoms. Conclusions : Hand Great Yin Lung meridian muscle system showed similarity and difference to deep front arm line in anatomical train. Further studies would be needed.

An Analysis of Transmitted-Vibration Characteristics by Different Wrist Posture during Grinding Tasks (그라인딩 작업시 손목자세별 국소진동 전달특성 분석)

  • Hwang, Seong-Hwan;Lee, Dong-Choon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.29-37
    • /
    • 2007
  • This study was performed to evaluate the characteristics of transmitted vibration to hand-arm system under different work posture while operating a light-weighted powered hand grinder. For the experiment, 8 different types of wrist posture (natural, unlar-flexion, radual-flexion, flexion, extension, complex posture, and etc.) and 3 types of feed force (20[N], 50[N], 70[N]) were considered. 10 male subjects were employed to polish metal plate with a hand grinder. All of them were normal and healthy with no history and symptom of the work related musculoskeletal disorders in the dominant hand. Vibration acceleration data were recorded with sampling rate, 2048[Hz]. In addition, unweighted overall R.M.S. acceleration at the tool and wrist, and transmissibility between them were used to evaluate factors from the recorded tri-axial vibration acceleration. The results indicate that transmissibility of natural wrist posture was significantly higher than others. In addition, as the feed force becomes larger, the vibration was transmitted in large quantities to hand-arm system through radius.

Determination of Recommendable Powered Drill Weight by the Characteristics of Transmitted Vibration on Hand-Arm System (전동드릴의 진동전달 특성에 따른 적정 드릴 무게의 결정)

  • Lee, Dong-Choon;Kim, Kil-Joo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.75-86
    • /
    • 2000
  • In this study, the characteristics of transmitted vibration on HAS(hand-arm system) were identified to evaluate physical load due to the work surface orientation, tool weight and push force during powered drilling tasks. The characteristics of transmitted vibration on work surface orientation showed that the acceleration of transmitted vibration on horizontal work surface was higher than that on the vertical work surface. Regarding the characteristics of transmitted vibration on tool weight, the vibration acceleration level becomes lower as the tool weight becomes heavier. The amount of transmitted vibration on hand-arm system was decreased down to the tool weight of 2.4kg. However, as the tool weight becomes heavier than 2.8kg, the amount of transmitted vibration was increased and had peak value at 3.2kg of tool weight. Regarding the characteristics of transmitted vibration on push force, the vibration acceleration level goes higher, as the push force becomes larger. The characteristics of transmitted vibration on the axis of vibration showed that the direction of $Z_h$ had the highest acceleration compared to the direction of $X_h$, and $Y_h$. The direction of $X_h$, $Y_h$ and $Z_h$ had the highest acceleration of transmitted vibration on the hand, wrist and elbow, respectively. The results of this study showed that the condition which affect the lowest physical load to the subject on the powered drilling task would be working with the 2.4kg of tool weight on the vertical work surface.

  • PDF

A Remote Control of 6 d.o.f. Robot Arm Based on 2D Vision Sensor (2D 영상센서 기반 6축 로봇 팔 원격제어)

  • Hyun, Woong-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.933-940
    • /
    • 2022
  • In this paper, the algorithm was developed to recognize hand 3D position through 2D image sensor and implemented a system to remotely control the 6 d.o.f. robot arm by using it. The system consists of a camera that acquires hand position in 2D, a computer that controls robot arm that performs movement by hand position recognition. The image sensor recognizes the specific color of the glove putting on operator's hand and outputs the recognized range and position by including the color area of the glove as a shape of rectangle. We recognize the velocity vector of end effector and control the robot arm by the output data of the position and size of the detected rectangle. Through the several experiments using developed 6 axis robot, it was confirmed that the 6 d.o.f. robot arm remote control was successfully performed.

A study on deburring task of robot arm using neural network (신경망을 이용한 ROBOT ARM의 디버링(Deburring) 작업에 관한 연구)

  • 주진화;이경문;이장명
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.139-142
    • /
    • 1996
  • This paper presents a method of controlling contact force for deburring tasks. The cope with the nonlinearities and time-varying properties of the robot and the environment, a neural network control theory is applied to design the contact force control system. We show that the contact force between the hand and the contacting surface can be controlled by adjusting the command velocity of a robot hand, which is accomplished by the modeling of a robot and the environment as Mass-Spring-Damper system. Simulation results are shown.

  • PDF

Method for C-arm Based Guide Needle Insertion Assistant System for Endoscopic Disc Surgery (C-arm 영상 기반 척추 디스크 내시경 수술을 위한 가이드 바늘 삽입 보조 시스템)

  • Yoon, Hyon Min;Cho, Hyunchul;Park, Kyusic;Shin, Sangkyun;Lee, Deukhee
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.3
    • /
    • pp.263-268
    • /
    • 2015
  • Due to an increased sitting time in work, lumbar disc disease is one of the most frequent diseases in modern days, and this occasionally requires surgery for treatment. Endoscopic disc surgery, one of the common disc surgeries, requires a process of inserting a guide needle to the target disc for which the insertion path is manually planned by drawing lines on the patient's skin while monitoring the fluoroscopic view of the lumbar. Such procedure inevitably exposes both surgeon and patient to the fluoroscopy radiation emitted from the c-arm for a long time. To reduce the radiation exposure time, this study proposes a computer assisted method of calculating the 3D guide needle path by using 2D c-arm images of the disc in 3 different angles. Additionally, a method of the guide robot control based on the 3D needle path was developed by implementing the Hand-eye Calibration method to calculate the transformation matrix between the c-arm and robot base coordinate systems. The proposed system was then tested for its accuracy.