• Title/Summary/Keyword: Hand strengths

Search Result 159, Processing Time 0.023 seconds

Crack Damages in Exterior Wall Structures of Korean High-Rise Apartment Buildings Based on Nonlinear Finite Element Analysis (비선형 유한요소해석 기반 국내 고층아파트 외벽구조의 균열손상 특성 분석)

  • Kim, Sung Hyun;Mo, Sang Yeong;Kim, Si Hyun;Choi, Kyoung Kyu;Kang, Su Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.47-57
    • /
    • 2024
  • Recently, in newly constructed apartment buildings, the exterior wall structures have been characterized by thinness, having various openings, and a significantly low reinforcement ratio. In this study, a nonlinear finite element analysis was performed to investigate the crack damage characteristics of the exterior wall structure. The limited analysis models for a 10-story exterior wall were constructed based on the prototype apartment building, and nonlinear static analysis (push-over analysis) was performed. Based on the finite element (FE) analysis model, the parametric study was conducted to investigate the effects of various design parameters on the strength and crack width of the exterior walls. As the parameters, the vertical reinforcement ratio and horizontal reinforcement ratio of the wall, as well as the uniformly distributed longitudinal reinforcement ratio and shear reinforcement ratio of the connection beam, were addressed. The analysis results showed that the strength and deformation capacity of the prototype exterior walls were limited by the failure of the connection beam prior to the flexural yielding of the walls. Thus, the increase of wall reinforcement limitedly affected the failure modes, peak strengths, and crack damages. On the other hand, when the reinforcement ratio of the connection beams was increased, the peak strength was increased due to the increase in the load-carrying capacity of the connection beams. Further, the crack damage index decreased as the reinforcement ratio of the connection beam increased. In particular, it was more effective to increase the uniformly distributed longitudinal reinforcement ratio in the connection beams to decrease the crack damage of the coupling beams, regardless of the type of the prototype exterior walls.

A generalized explainable approach to predict the hardened properties of self-compacting geopolymer concrete using machine learning techniques

  • Endow Ayar Mazumder;Sanjog Chhetri Sapkota;Sourav Das;Prasenjit Saha;Pijush Samui
    • Computers and Concrete
    • /
    • v.34 no.3
    • /
    • pp.279-296
    • /
    • 2024
  • In this study, ensemble machine learning (ML) models are employed to estimate the hardened properties of Self-Compacting Geopolymer Concrete (SCGC). The input variables affecting model development include the content of the SCGC such as the binder material, the age of the specimen, and the ratio of alkaline solution. On the other hand, the output parameters examined includes compressive strength, flexural strength, and split tensile strength. The ensemble machine learning models are trained and validated using a database comprising 396 records compiled from 132 unique mix trials performed in the laboratory. Diverse machine learning techniques, notably K-nearest neighbours (KNN), Random Forest, and Extreme Gradient Boosting (XGBoost), have been employed to construct the models coupled with Bayesian optimisation (BO) for the purpose of hyperparameter tuning. Furthermore, the application of nested cross-validation has been employed in order to mitigate the risk of overfitting. The findings of this study reveal that the BO-XGBoost hybrid model confirms better predictive accuracy in comparison to other models. The R2 values for compressive strength, flexural strength, and split tensile strength are 0.9974, 0.9978, and 0.9937, respectively. Additionally, the BO-XGBoost hybrid model exhibits the lowest RMSE values of 0.8712, 0.0773, and 0.0799 for compressive strength, flexural strength, and split tensile strength, respectively. Furthermore, a SHAP dependency analysis was conducted to ascertain the significance of each parameter. It is observed from this study that GGBS, Flyash, and the age of specimens exhibit a substantial level of influence when predicting the strengths of geopolymers.

Comparison of Muscle Strength for Women with Osteoarthritis after 8-week Tai-Chi Exercise and Aquatic Exercise (수중운동과 타이치운동 후 여성 골관절염 환자의 근력변화)

  • Lee, Hea-Young;Lee, Eun-Ok;Song, Rha-Yun
    • Journal of muscle and joint health
    • /
    • v.12 no.2
    • /
    • pp.155-165
    • /
    • 2005
  • Arthritis is one of the most common chronic degenerative joint disease in elderly. Osteoarthritis is a widespread, slowly developing disease, with a high prevalence increasing with age in women. The large joints mostly involved by the disease are the knees. But there are no treatments available that cure the underlying process of osteoarthritis diseases. Physical exercise helps in increasing cartilage nutrition and remodeling, increases the synovial blood flow, decrease swelling, and improves muscle strength. Thus, exercise has been suggested as an important nursing strategy in osteoarthritis. Purpose: The purpose of this study were to compare muscle strength between Tai-Chi exercise and aquatic exercise for women with knee osteoarthritis. Methods: A quasi-experimental study with pretest and posttest measures was used. The study subjects were those who had been enrolled in a community health center, and agreed to participate in the study for eight weeks, signed the consent form, and obtained the physicians approval. The study dropout rates were 13.2% with the final study subjects of 17 on Tai-Chi exercise, 16 on aquatic exercise program. The collected data were analyzed using SPSS for Window (version 12.0). Independent sample t-test and paired t-test was performed to compare of muscle strength for women with osteoarthritis after 8-week Tai-Chi exercise and aquatic Exercise. Results: The homogeneity tests of demographic characteristics and study variables at the pretest data revealed no significant differences between two groups. After 8-week Tai-Chi and aquatic exercise, there was significant result in pre-post test comparison on muscle strength on Tai-Chi group, but no significant in aquatic group. There were no significant differences of knee extensor (p=.078), and hand grip(p=.118) in group comparisons on muscle strengths. But there were significant differences of knee flexor(p=.024). Conclusion: Tai-chi exercise was effective in improving knee flexor. So, it seems that Tai-chi exercise may be more suitable for aquatic exercise in osteoarthritis exercise programs. Further studies with other comparisons in physical and psycho social outcomes are necessary to confirm the more effects of exercise.

  • PDF

Experimental Analysis of Large Size Concrete-Filled Glass Fiber Reinforced Composite Piles Subjected to the Flexural Compression (대구경 콘크리트 충전 복합소재 파일의 휨-압축 거동에 대한 실험적 분석)

  • Lee, Sung Woo;Choi, Sokhwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.519-529
    • /
    • 2009
  • Fiber reinforced composite materials have various advantages in mechanical and chemical aspects. Not only high fatigue and chemical resistance, but also high specific strength and stiffness are attained, and therefore, damping characteristics are beneficial to marine piles. Since piles used for marine structures are subjected to compression and bending as well, detailed research is necessary. Current study examine the mechanical behavior under flexural and/or compressive loads using concrete filled fiber reinforced plastic composite piles, which include large size diameter. 25 pile specimens which have various size of diameters and lengths were fabricated using hand lay-up or filament winding method to see the effect of fabrication method. The inner diameters of test specimens ranged from 165 mm to 600 mm, and the lengths of test specimens ranged from 1,350 mm to 8,000 mm. The strengths of the fill-in concrete were 27 and 40 MPa. Fiber volumes used in circumferential and axial directions are varied in order to see the difference. For some tubes, spiral inner grooves were fabricated to reduce shear deformation between concrete and tube. It was observed that the piles made using filament winding method showed higher flexural stiffness than those made using hand lay-up. The flexural stiffness of piles decreases from the early loading stage, and this phenomenon does not disappear even when the inner spiral grooves were introduced. It means that the relative shear deformation between the concrete and tube wasn't able to be removed.

Effect of Planting Density, Growing Medium and Nutrient Solution Strength on Growth and Development of Lily in Box Culture (나리의 상자재배시 재식밀도, 배지 및 양액농도가 생육에 미치는 영향)

  • Chae, Soo Cheon
    • FLOWER RESEARCH JOURNAL
    • /
    • v.16 no.1
    • /
    • pp.36-43
    • /
    • 2008
  • This purpose of this study was to examine the effect of planting density, growing medium and strength of a nutrient solution (National Horticultural Research Institute's nutrient solution: HRI's) on the growth and development of Oriental hybrid lily 'Le Reve' in a box cultivation. The planting density with 14, 18 and 22 bulbs had sprouting one day earlier than other treatments. Planting density of 22 bulbs flowered first, while six bulbs flowered the last, indicating that higher planting densities led earlier flowering. The increasing planting density increased stem length of cut flowers. On the other hand, cut flower quality was improved when the planting density was lower. The incidence of physiological disorders such as blasting was more frequent in planting density of 22, 18, and 14, indicating that higher planting densities caused higher incidences of physiological disorders. All planting densities except 22 bulbs displayed superior results in width, weight, number, and scale weight of the bulbs. Greater planting densities led to inferior bulb enlargement and an increased decomposition rate. pH decreased in all treatments after the bulb enlargement and decreased more as the planting density increased. Contents of P, K, Ca, and Mg increased, while contents of K and Ca decreased, as the planting density increased. The rice hull+coir (1:1, v/v) treatment was better than others, but did not show that much of a difference. Moreover, in bulbs enlargement after cut flower harvest, lily medium and perlite+peat moss treatments showed superior results, and decomposition rate was the greatest in the rice hull+coir (1:1, v/v) treatment. In the HRI's solution strength treatment from the period of flower bud emergence to flower harvest, higher solution strengths gave better cut flower quality in terns of length, weight, and number of flowers. The non-treated control and one third strength of a HRI's solution hastened flowering, indicating that lower strengths led to earlier flowering. According to the results of leaf analysis as affected by solution strength during the flower harvest, absorption rates of N and K were greater when the strength was higher, and Ca and Mg showed the same tendency. On the other hand, the absorption rate of P was the lowest in all treatments.

Shear bond strength of metal orthodontic brackets bonded with Self-Etching Primer (Self-etching primer를 이용하여 접착된 교정용 브라켓의 전단결합강도)

  • Ahn, Yun-Pyo;Kim, Hyo-Young;Jeon, Young-Mi;Kim, Jong-Ghee
    • The korean journal of orthodontics
    • /
    • v.33 no.1 s.96
    • /
    • pp.51-61
    • /
    • 2003
  • The purpose of this study was to evaluate the effects of a self-etching primer on the shear bond strength of orthodontic brackets and on the failure pattern of bracket-adhesive interfaces in dry or wet condition. Brackets were bonded to extracted human teeth according to one of three experimental protocols. In the Group P, teeth were etched with $37\%$ phosphoric acid. After the Transbond XT Primer was applied onto the etched surfaces, the brackets were bonded with Transbond XT(3M, Unitek, Monrovia, Calif) and light cured for 40 seconds. In the Group SD, a self-etching primer(3M, Unitek, Monrovia, Calif) was placed on the enamel for 3 seconds and gently evaporated with air, as suggested by the manufacturer. The brackets were then bonded with Transbond XT as in the Group P In the Group SW, artificial saliva was applied to the enamel surface for 10 seconds to allow complete hydration of the surface before application self-etching primer The brackets were then bonded following the procedures of Group SD. Each group was divided into 2 sub-groups(0.5h, 24h) according to debonding time. Shear bond strengths were measured by Instron universal testing machine. After debonding, the teeth and brackets were examined under scanning electron microscope and assessed with the adhesive remnant index. The result obtained were summarized as follows ; 1. The shear bond strengths were high enough to use clinically in all testing groups, but the shear bond strengths of Group SD and SW were significantly lower than Group P(p<0.05). 2. With respect to comparison of debonding time, 24h debonding samples exhibited heigher shear bond strength than 0.5h debonding samples in Group P, SD and SW(p<0.05). 3. In the self etching primer groups(Group SD and Group SW), there was no significant difference in mean shear bond strength between under dry and wet state(p>0.05). 4. There was a greater frequency of ARI score of 0 and 1 with the Group P. On the other hand, there was a higher frequency of ARI scores of 2 and 3 with Group SD and Group SW(p<0.05).

Analysis of the Weight of SWOT Factors of Korean Venture Companies Based on the Industry 4.0 (4차 산업혁명 기반 한국 벤처기업의 SWOT요인에 대한 중요도 분석)

  • Lee, Dongik;Lee, Sangsuk
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.16 no.4
    • /
    • pp.115-133
    • /
    • 2021
  • This study examines the concept and related technologies of the 4th industrial revolution that has been mixed so far and examines the socio-economic changes and influences resulting from it, and the cases of responding to the 4th industrial revolution in major countries. Based on this, by deriving SWOT factors and calculating the importance of each factor for Korean venture companies to prepare for the forth industrial revolution, it was intended to help the government and policymakers in suggesting directions for establishing related policies. Furthermore, the purpose of this study was to suggest a direction for securing global competitiveness to Korean venture entrepreneurs and to help with basic and systematic analysis for further academic in-depth research. For this study, a total of 21 items derived through extensive literature research and data research to understand what are the necessary competency factors for internal and external environmental changes in order for Korean venture companies to have global competitiveness in the era of the 4th Industrial Revolution. After reviewing SWOT factors by three expert groups and confirming them through Delphi survey, the importance of each item was analyzed by using AHP, a systematic decision-making technique. As a result of the analysis, it was shown that Strength(48%), Opportunity(25%), Threat(16%), Weakness(11%) were considered important in order. In terms of sub-items, 'quick and flexible commercialization capability', 'platform/big data/non-face-to-face service activation', and 'ICT infrastructure and it's utilization' were shown to be of the comparatively high importance. On the other hand, in the lower three items, 'macro-economic stability and social infrastructure', 'difficulty in entering overseas markets due to global protectionism', and 'absolutely inferior in foreign investment' were found to have low priority. As a result of the correlation verification by item to see differences in opinions by industry, academia, and policy expert groups, there was no significant difference of opinion, as industry and academic experts showed a high correlation and industry experts and policy experts showed a moderate correlation. The correlation between the academic and policy experts was not statistically significant (p<0.01), so it was analyzed that there was a difference of opinion on importance. This was due to the fact that policy experts highly valued 'quick and flexible commercialization', which are strengths, and 'excellent educational system and high-quality manpower' and 'creation of new markets' which are opportunity items, while academic experts placed great importance on 'support part of government policy', which are strengths. The implication of this study is that in order for Korean venture companies to secure competitiveness in the field of the 4th industrial revolution, it is necessary to have a policy that preferentially supports the relevant items of strengths and opportunity factors. The difference in the details of strength factors and opportunity factors, which shows a high level of variability, suggests that it is necessary to actively review it and reflect it in the policy.

A study on Convergence Weapon Systems of Self propelled Mobile Mines and Supercavitating Rocket Torpedoes (자항 기뢰와 초공동 어뢰의 융복합 무기체계 연구)

  • Lee, Eunsu;Shin, Jin
    • Maritime Security
    • /
    • v.7 no.1
    • /
    • pp.31-60
    • /
    • 2023
  • This study proposes a new convergence weapon system that combines the covert placement and detection abilities of a self-propelled mobile mine with the rapid tracking and attack abilities of supercavitating rocket torpedoes. This innovative system has been designed to counter North Korea's new underwater weapon, 'Haeil'. The concept behind this convergence weapon system is to maximize the strengths and minimize the weaknesses of each weapon type. Self-propelled mobile mines, typically placed discreetly on the seabed or in the water, are designed to explode when a vessel or submarine passes near them. They are generally used to defend or control specific areas, like traditional sea mines, and can effectively limit enemy movement and guide them in a desired direction. The advantage that self-propelled mines have over traditional sea mines is their ability to move independently, ensuring the survivability of the platform responsible for placing the sea mines. This allows the mines to be discreetly placed even deeper into enemy lines, significantly reducing the time and cost of mine placement while ensuring the safety of the deployed platforms. However, to cause substantial damage to a target, the mine needs to detonate when the target is very close - typically within a few yards. This makes the timing of the explosion crucial. On the other hand, supercavitating rocket torpedoes are capable of traveling at groundbreaking speeds, many times faster than conventional torpedoes. This rapid movement leaves little room for the target to evade, a significant advantage. However, this comes with notable drawbacks - short range, high noise levels, and guidance issues. The high noise levels and short range is a serious disadvantage that can expose the platform that launched the torpedo. This research proposes the use of a convergence weapon system that leverages the strengths of both weapons while compensating for their weaknesses. This strategy can overcome the limitations of traditional underwater kill-chains, offering swift and precise responses. By adapting the weapon acquisition criteria from the Defense force development Service Order, the effectiveness of the proposed system was independently analyzed and proven in terms of underwater defense sustainability, survivability, and cost-efficiency. Furthermore, the utility of this system was demonstrated through simulated scenarios, revealing its potential to play a critical role in future underwater kill-chain scenarios. However, realizing this system presents significant technical challenges and requires further research.

  • PDF

An Experimental Study to Prevent Debonding Failure of RC Beams Strengthened with GFRP Sheets (유리섬유시트로 휨보강된 RC보의 부착파괴 방지 상세에 관한 실험적 연구)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.677-684
    • /
    • 2007
  • This study investigates the failure mechanism of RC beams strengthened with GFRP (glass fiber reinforced polymer) sheets. After analyzing failure mechanisms, the various methods to prevent the debonding failures, such as increasing bonded length of GFRP sheets, U-shape wrappings and epoxy shear keys are examined. The bonded length of GFRP sheets are calculated based on the assumed bond strengths of epoxy resin. The U-shape wrappings are either adopted at the end or center of the CFRP sheets bonded to the beam soft. The epoxy shear keys are embedded to the beam soft to provide sufficient bond strength. The end U-wrappings and the center U-wrappings are conventional, while epoxy shear keys are new details developed in this study. A total six half-scale RC beams have been constructed and tested to investigate the effectiveness of each methods to prevent debonding failure of GFRP sheets. From the experimental results, it was found that increasing bonded length or end U-wrappings do not prevent debonding failure. On the other hand, the beams with center U-wrappings and shear keys reached an ultimate state with their sufficient performance. The center U-wrappings tended to control debonding of the longitudinal GFRP sheets because the growth of the longitudinal cracks along the edges of the composites was delayed. In the case of shear keys, it was sufficient to prevent debonding and the beam was failed by GFRP sheets rupture.

Design for Installation of Suction Piles in Sand Deposits for Mooring of Floating Offshore Structures (부유식 해상구조물의 계류를 위한 사질토 지반의 석션파일 설계)

  • Park, Chul-Soo;Lee, Ju-Hyung;Baek, Du-Hyun;Do, Jin-Ung
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.10
    • /
    • pp.33-44
    • /
    • 2014
  • The preliminary design of suction pile as the supporting system for concrete floating structures was performed for the pilot project of the southwest coast area in Korea. Prior to starting design work, site conditions of the area including ground and hydraulic conditions, and a 100-year return period external force were throughly evaluated. The suction pile for mooring of the offshore floating structures has to satisfy the lateral resistance against external force as well as the penetration ability according to the soil conditions such as soil types, shear strengths, effective stresses, and seepage forces. In the design, the required penetration depths, which were stable for lateral resistance, were evaluated with the diameters of cylindrical suction pile as the final installing ones. And the design suction pressures at each penetrating depths, at which sand boiling did not occur, were assessed through the comparison of penetration and penetrationresistance forces. As a result, it was impossible for suction piles with the diameter range of 3.0~5.0 m to penetrate into required penetration depths. On the other hand, suction piles with the diameter range of 6.0 m and 7.0 m satisfied both the horizontal stability and the penetration ability by design suction pressures at the required penetration depths of 8.5 m and 8.0 m, respectively.