• Title/Summary/Keyword: Hand image processing

Search Result 233, Processing Time 0.028 seconds

DEVELOPMENT OF ROI PROCESSING SYSTEM USING QUICK LOOK IMAGE

  • Ahn, Sang-Il;Kim, Tae-Hoon;Kim, Tae-Young;Koo, In-Hoi
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.526-529
    • /
    • 2007
  • Due to its inherent feature of high-resolution satellite, there is strong need in some specific area to minimize the processing time required to get a standard image on hand from downlink signal acquisition. However, in general image processing system, it takes considerable time to get image data up to certain level from raw data acquisition because the huge amount of data is dealt sequentially as input data. This paper introduces the high-speed image processing system which generates the image data only for the area selected by user. To achieve the high speed performance, this system includes Quick Look Image display function with sampling, ROI selection function, Image Line Index function, and Distributed processing function. The developed RPS was applied to KOMPSAT-2 320Mbps downlink channel and its effectiveness was successfully demonstrated. This feature to provide the image product very quickly is expected to promote the application of high resolution satellite image.

  • PDF

Automatic Hand Measurement System from 2D Hand Image for Customized Glove Production

  • Han, Hyun Sook;Park, Chang Kyu
    • Fashion & Textile Research Journal
    • /
    • v.18 no.4
    • /
    • pp.468-476
    • /
    • 2016
  • Recent advancements in optics technology enable us to realize fast scans of hands using two-dimensional (2D) image scanners. In this paper, we propose an automatic hand measurement system using 2D image scanners for customized glove production. To develop the automatic hand measurement system, firstly hand scanning devices has been constructed. The devices are designed to block external lights and have user interface to guide hand posture during scanning. After hands are scanned, hand contour is extracted using binary image processing, noise elimination and outline tracing. And then, 19 hand landmarks are automatically detected using an automatic hand landmark detection algorithm based on geometric feature analysis. Then, automatic hand measurement program is executed based on the automatically extracted landmarks and measurement algorithms. The automatic hand measurement algorithms have been developed for 18 hand measurements required for custom-made glove pattern making. The program has been coded using the C++ programming language. We have implemented experiments to demonstrate the validity of the system using 11 subjects (8 males, 3 females) by comparing automatic 2D scan measurements with manual measurements. The result shows that the automatic 2D scan measurements are acceptable in the customized glove making industry. Our evaluation results confirm its effectiveness and robustness.

Resolving Hand Region Occlusion in Tangible Augmented Reality Envrionments (감각형 증강현실 환경에서의 손 가림 현상 해결 방안)

  • Moon, Hee-Cheol;Park, Hyung-Jun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.4
    • /
    • pp.277-284
    • /
    • 2011
  • In tangible augmented reality (AR) environments for virtual prototyping, the user interacts with virtual products by manipulating tangible objects with his or her hands, but the user often encounter awkward situations in which his or her hands are occluded by augmented virtual objects, which reduces both immersion and ease of interaction. In this paper, we present how to resolve such hand region occlusion in order to enhance natural interaction and immersive visualization. In the AR environment considered, we use two types (product-type and pointer-type) of tangible objects for tangible user interaction with a virtual product of interest. Holding the tangible objects with his or her hands, the user can create input events by touching specified regions of the product-type tangible object with the pointer-type tangible object. We developed a method for resolving hand region occlusion frequently arising during such user interaction, It first detect hand region in a real image and refines the rendered image of the virtual object by subtracting the hand region from the rendered image, Then, it superimposes the refined image onto the real image to obtain an image in which the occlusion is resolved. Incorporated into tangible AR interaction for virtual prototyping of handheld products such as cellular phones and MP3 players, the method has been found by a preliminary user study that it is not only useful to improve natural interaction and immersive visualization of virtual products, but also helpful for making the users experience the products' shapes and functions better.

Color-Based Real-Time Hand Region Detection with Robust Performance in Various Environments (다양한 환경에 강인한 컬러기반 실시간 손 영역 검출)

  • Hong, Dong-Gyun;Lee, Donghwa
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.6
    • /
    • pp.295-311
    • /
    • 2019
  • The smart product market is growing year by year and is being used in many areas. There are various ways of interacting with smart products and users by inputting voice recognition, touch and finger movements. It is most important to detect an accurate hand region as a whole step to recognize hand movement. In this paper, we propose a method to detect accurate hand region in real time in various environments. A conventional method of detecting a hand region includes a method using depth information of a multi-sensor camera, a method of detecting a hand through machine learning, and a method of detecting a hand region using a color model. Among these methods, a method using a multi-sensor camera or a method using a machine learning requires a large amount of calculation and a high-performance PC is essential. Many computations are not suitable for embedded systems, and high-end PCs increase or decrease the price of smart products. The algorithm proposed in this paper detects the hand region using the color model, corrects the problems of the existing hand detection algorithm, and detects the accurate hand region based on various experimental environments.

Hand Language Translation Using Kinect

  • Pyo, Junghwan;Kang, Namhyuk;Bang, Jiwon;Jeong, Yongjin
    • Journal of IKEEE
    • /
    • v.18 no.2
    • /
    • pp.291-297
    • /
    • 2014
  • Since hand gesture recognition was realized thanks to improved image processing algorithms, sign language translation has been a critical issue for the hearing-impaired. In this paper, we extract human hand figures from a real time image stream and detect gestures in order to figure out which kind of hand language it means. We used depth-color calibrated image from the Kinect to extract human hands and made a decision tree in order to recognize the hand gesture. The decision tree contains information such as number of fingers, contours, and the hand's position inside a uniform sized image. We succeeded in recognizing 'Hangul', the Korean alphabet, with a recognizing rate of 98.16%. The average execution time per letter of the system was about 76.5msec, a reasonable speed considering hand language translation is based on almost still images. We expect that this research will help communication between the hearing-impaired and other people who don't know hand language.

A Study on Hand Gesture Classification Deep learning method device based on RGBD Image (RGBD 이미지 기반 핸드제스처 분류 딥러닝 기법의 연구)

  • Park, Jong-Chan;Li, Yan;Shin, Byeong-Seok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.1173-1175
    • /
    • 2019
  • 소음이 심하거나 긴급한 상황 등에서 서로 다른 핸드제스처에 대한 인식을 컴퓨터의 입력으로 받고 이를 특정 명령으로 인식하는 등의 연구가 로봇 분야에서 연구되고 있다. 그러나 핸드제스처에 대한 전처리 과정에서 RGB데이터를 활용하거나 또는 스켈레톤을 활용하는 연구들이 다양하게 연구되었지만, 실생활에서의 노이즈가 많아 분류 정확도가 높지 않거나 컴퓨팅 파워의 사용이 과다한 문제가 발생했다. 본 논문에서는 RGBD 이미지를 사용하여 Hand Gesture를 트레이닝 받은 Keras 모델을 통해 입력받은 Hand Gesture을 분류하는 연구를 진행하였다. Depth Camera를 통하여 입력받은 Hand Gesture Raw-Data를 Image로 재구성하여 딥러닝을 진행하였다.

Inter-Conversion Matrix for Transcoding Block DCT and DWT-Based Compressed Images

  • Kim, Donggyun;Lim, Sanghee;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.3
    • /
    • pp.103-109
    • /
    • 2014
  • This study derived the inter-conversion matrices, which can be used in heterogeneous image transcoding between the compressed images using different transforms, such as the $8{\times}8$ block discrete cosine transform (BDCT) and the one-level discrete wavelet transform (DWT). Basically, to obtain the one-level DWT coefficients from $8{\times}8$ BDCT, inverse BDCT should be performed followed by forward DWT, and vice versa. On the other hand, if the proposed interconversion approach is used, only one inter-conversion matrix multiplication makes the corresponding transcoding possible. Both theoretical and experimental analyses showed that the amount of computation of the proposed approach decreases over 20% when the inter-conversion matrices are used under specific conditions.

Flexible 3-dimension measuring system using robot hand

  • Ishimatsu, T.;Yasuda, K.;Kumon, K.;Matsui, R.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.700-704
    • /
    • 1989
  • A robotic system with a 3-dimensional profile measuring sensor is developed in order to measure the complicated shape of the target body. Due to this 3-dimensional profile measuring sensor, a computer is able to adjust the posture of the robot hand so that complicated global profile of the target body can be recognized after several measurements from the variant directions. In order to enable fast data processing, a digital signal processor and a look-up table is introduced.

  • PDF

3D Fingertip Estimation based on the TOF Camera for Virtual Touch Screen System (가상 터치스크린 시스템을 위한 TOF 카메라 기반 3차원 손 끝 추정)

  • Kim, Min-Wook;Ahn, Yang-Keun;Jung, Kwang-Mo;Lee, Chil-Woo
    • The KIPS Transactions:PartB
    • /
    • v.17B no.4
    • /
    • pp.287-294
    • /
    • 2010
  • TOF technique is one of the skills that can obtain the object's 3D depth information. But depth image has low resolution and fingertip occupy very small region, so, it is difficult to find the precise fingertip's 3D information by only using depth image from TOF camera. In this paper, we estimate fingertip's 3D location using Arm Model and reliable hand's 3D location information that is modified by hexahedron as hand model. Using proposed method we can obtain more precise fingertip's 3D information than using only depth image.

The Advanced Digital Special Images and Technology

  • Nakajima, Masayuki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1996.06b
    • /
    • pp.50-55
    • /
    • 1996
  • Multimedia boom has happened worldwide these days. In multimedia, we use several kinds of media such as character, figure, voice, music, still images, moving picture etc.. Then I think image including moving picture is the most effective and important media for human being. Creating digital images using a computer has the following two main approaches, depending on how the computer is used. 1. CG Technology. Created images, produced through computer graphics. 2. Digital Image Processing. Images processed through digital image processing technologies. Approach (1) is very popular as Computer Graphics. Two-dimensional and three-dimensional computer graphics techniques are used over wide applications today. On the other hand, Approach (2), which uses digital image processing technology, has been attracting attention lately, in the filed of movies and television. In this report, I will introduce these approaches of CG and digital image processing, and show some application fields such as current movies.

  • PDF