• Title/Summary/Keyword: Hand gesture

Search Result 406, Processing Time 0.039 seconds

Hand Gesture Interface for Manipulating 3D Objects in Augmented Reality (증강현실에서 3D 객체 조작을 위한 손동작 인터페이스)

  • Park, Keon-Hee;Lee, Guee-Sang
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.5
    • /
    • pp.20-28
    • /
    • 2010
  • In this paper, we propose a hand gesture interface for the manipulation of augmented objects in 3D space using a camera. Generally a marker is used for the detection of 3D movement in 2D images. However marker based system has obvious defects since markers are always to be included in the image or we need additional equipments for controling objects, which results in reduced immersion. To overcome this problem, we replace marker by planar hand shape by estimating the hand pose. Kalman filter is for robust tracking of the hand shape. The experimental result indicates the feasibility of the proposed algorithm for hand based AR interfaces.

Hand Gesture Classification Using Multiple Doppler Radar and Machine Learning (다중 도플러 레이다와 머신러닝을 이용한 손동작 인식)

  • Baik, Kyung-Jin;Jang, Byung-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.1
    • /
    • pp.33-41
    • /
    • 2017
  • This paper suggests a hand gesture recognition technology to control smart devices using multiple Doppler radars and a support vector machine(SVM), which is one of the machine learning algorithms. Whereas single Doppler radar can recognize only simple hand gestures, multiple Doppler radar can recognize various and complex hand gestures by using various Doppler patterns as a function of time and each device. In addition, machine learning technology can enhance recognition accuracy. In order to determine the feasibility of the suggested technology, we implemented a test-bed using two Doppler radars, NI DAQ USB-6008, and MATLAB. Using this test-bed, we can successfully classify four hand gestures, which are Push, Pull, Right Slide, and Left Slide. Applying SVM machine learning algorithm, it was confirmed the high accuracy of the hand gesture recognition.

An Extraction Method of Meaningful Hand Gesture for a Robot Control (로봇 제어를 위한 의미 있는 손동작 추출 방법)

  • Kim, Aram;Rhee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.2
    • /
    • pp.126-131
    • /
    • 2017
  • In this paper, we propose a method to extract meaningful motion among various kinds of hand gestures on giving commands to robots using hand gestures. On giving a command to the robot, the hand gestures of people can be divided into a preparation one, a main one, and a finishing one. The main motion is a meaningful one for transmitting a command to the robot in this process, and the other operation is a meaningless auxiliary operation to do the main motion. Therefore, it is necessary to extract only the main motion from the continuous hand gestures. In addition, people can move their hands unconsciously. These actions must also be judged by the robot with meaningless ones. In this study, we extract human skeleton data from a depth image obtained by using a Kinect v2 sensor and extract location data of hands data from them. By using the Kalman filter, we track the location of the hand and distinguish whether hand motion is meaningful or meaningless to recognize the hand gesture by using the hidden markov model.

Automatic hand gesture area extraction and recognition technique using FMCW radar based point cloud and LSTM (FMCW 레이다 기반의 포인트 클라우드와 LSTM을 이용한 자동 핸드 제스처 영역 추출 및 인식 기법)

  • Seung-Tak Ra;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.486-493
    • /
    • 2023
  • In this paper, we propose an automatic hand gesture area extraction and recognition technique using FMCW radar-based point cloud and LSTM. The proposed technique has the following originality compared to existing methods. First, unlike methods that use 2D images as input vectors such as existing range-dopplers, point cloud input vectors in the form of time series are intuitive input data that can recognize movement over time that occurs in front of the radar in the form of a coordinate system. Second, because the size of the input vector is small, the deep learning model used for recognition can also be designed lightly. The implementation process of the proposed technique is as follows. Using the distance, speed, and angle information measured by the FMCW radar, a point cloud containing x, y, z coordinate format and Doppler velocity information is utilized. For the gesture area, the hand gesture area is automatically extracted by identifying the start and end points of the gesture using the Doppler point obtained through speed information. The point cloud in the form of a time series corresponding to the viewpoint of the extracted gesture area is ultimately used for learning and recognition of the LSTM deep learning model used in this paper. To evaluate the objective reliability of the proposed technique, an experiment calculating MAE with other deep learning models and an experiment calculating recognition rate with existing techniques were performed and compared. As a result of the experiment, the MAE value of the time series point cloud input vector + LSTM deep learning model was calculated to be 0.262 and the recognition rate was 97.5%. The lower the MAE and the higher the recognition rate, the better the results, proving the efficiency of the technique proposed in this paper.

Automation of an Interactive Interview System by Hand Gesture Recognition Using Particle Filter

  • Lee, Yang-Weon
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.633-636
    • /
    • 2011
  • This paper describes a implementation of virtual interactive interview system. A hand motion recognition algorithm based on the particle filters is applied for this system. The particle filter is well operated for human hand motion recognition than any other recognition algorithm. Through the experiments, we show that the proposed scheme is stable and works well in virtual interview system's environments.

Hand-Gesture Recognition Using Concentric-Circle Expanding and Tracing Algorithm (동심원 확장 및 추적 알고리즘을 이용한 손동작 인식)

  • Hwang, Dong-Hyun;Jang, Kyung-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.3
    • /
    • pp.636-642
    • /
    • 2017
  • In this paper, We proposed a novel hand-gesture recognition algorithm using concentric-circle expanding and tracing. The proposed algorithm determines region of interest of hand image through preprocessing the original image acquired by web-camera and extracts the feature of hand gesture such as the number of stretched fingers, finger tips and finger bases, angle between the fingers which can be used as intuitive method for of human computer interaction. The proposed algorithm also reduces computational complexity compared with raster scan method through referencing only pixels of concentric-circles. The experimental result shows that the 9 hand gestures can be recognized with an average accuracy of 90.7% and an average algorithm execution time is 78ms. The algorithm is confirmed as a feasible way to a useful input method for virtual reality, augmented reality, mixed reality and perceptual interfaces of human computer interaction.

Hand gesture recognition for player control

  • Shi, Lan Yan;Kim, Jin-Gyu;Yeom, Dong-Hae;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1908-1909
    • /
    • 2011
  • Hand gesture recognition has been widely used in virtual reality and HCI (Human-Computer-Interaction) system, which is challenging and interesting subject in the vision based area. The existing approaches for vision-driven interactive user interfaces resort to technologies such as head tracking, face and facial expression recognition, eye tracking and gesture recognition. The purpose of this paper is to combine the finite state machine (FSM) and the gesture recognition method, in other to control Windows Media Player, such as: play/pause, next, pervious, and volume up/down.

  • PDF

Interactive visual knowledge acquisition for hand-gesture recognition (손 제스쳐 인식을 위한 상호작용 시각정보 추출)

  • 양선옥;최형일
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.9
    • /
    • pp.88-96
    • /
    • 1996
  • Computer vision-based gesture recognition systems consist of image segmentation, object tracking and decision. However, it is difficult to segment an object from image for gesture in computer systems because of vaious illuminations and backgrounds. In this paper, we describe a method to learn features for segmentation, which improves the performance of computer vision-based hand-gesture recognition systems. Systems interact with a user to acquire exact training data and segment information according to a predefined plan. System provides some models to the user, takes pictures of the user's response and then analyzes the pictures with models and a prior knowledge. The system sends messages to the user and operates learning module to extract information with the analyzed result.

  • PDF

Hand Expression Recognition for Virtual Blackboard (가상 칠판을 위한 손 표현 인식)

  • Heo, Gyeongyong;Kim, Myungja;Song, Bok Deuk;Shin, Bumjoo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1770-1776
    • /
    • 2021
  • For hand expression recognition, hand pose recognition based on the static shape of the hand and hand gesture recognition based on hand movement are used together. In this paper, we proposed a hand expression recognition method that recognizes symbols based on the trajectory of a hand movement on a virtual blackboard. In order to recognize a sign drawn by hand on a virtual blackboard, not only a method of recognizing a sign from a hand movement, but also hand pose recognition for finding the start and end of data input is also required. In this paper, MediaPipe was used to recognize hand pose, and LSTM(Long Short Term Memory), a type of recurrent neural network, was used to recognize hand gesture from time series data. To verify the effectiveness of the proposed method, it was applied to the recognition of numbers written on a virtual blackboard, and a recognition rate of about 94% was obtained.

A Real Time Low-Cost Hand Gesture Control System for Interaction with Mechanical Device (기계 장치와의 상호작용을 위한 실시간 저비용 손동작 제어 시스템)

  • Hwang, Tae-Hoon;Kim, Jin-Heon
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1423-1429
    • /
    • 2019
  • Recently, a system that supports efficient interaction, a human machine interface (HMI), has become a hot topic. In this paper, we propose a new real time low-cost hand gesture control system as one of vehicle interaction methods. In order to reduce computation time, depth information was acquired using a time-of-flight (TOF) camera because it requires a large amount of computation when detecting hand regions using an RGB camera. In addition, fourier descriptor were used to reduce the learning model. Since the Fourier descriptor uses only a small number of points in the whole image, it is possible to miniaturize the learning model. In order to evaluate the performance of the proposed technique, we compared the speeds of desktop and raspberry pi2. Experimental results show that performance difference between small embedded and desktop is not significant. In the gesture recognition experiment, the recognition rate of 95.16% is confirmed.