• Title/Summary/Keyword: Hand Tracking technology

Search Result 87, Processing Time 0.032 seconds

Wearless IoT Device Controller based on Deep Neural Network and Hand Tracking (딥 뉴럴 네트워크 및 손 추적 기반의 웨어리스 IoT 장치 컨트롤러)

  • Choi, Seung-June;Kim, Eun-Yeol;Kim, Jung-Hwa;Hwang, Chae-Eun;Choi, Tae-Young
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.924-927
    • /
    • 2018
  • 본 논문에서는 거동이 불편한 환자나 장애인들을 위해 신체에 착용하는 부가적인 장비 없이 멀리 있는 가전을 직접 움직이지 않고 편리하게 제어할 수 있는 RGB-D 카메라를 활용한 손 인식과 딥러닝 기반 IoT 장치 컨트롤 시스템을 제안한다. 특히, 제어하고자 하는 장치의 위치를 알기 위하여 YOLO 알고리즘을 이용하여 장치를 인식한다. 또한 그와 동시에 RGB-D 카메라의 라이브러리를 이용하여 사용자의 손을 인식, 현재 사용자 손의 위치와 사용자가 취하는 손동작을 통하여 해당 위치의 장치를 제어한다.

Remote Drawing Technology Based on Motion Trajectories Analysis (움직임 궤적 분석 기반의 원거리 판서 기술)

  • Leem, Seung-min;Jeong, Hyeon-seok;Kim, Sung-young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.2
    • /
    • pp.229-236
    • /
    • 2016
  • In this paper, we suggest new technology that can draw characters at a long distance by tracking a hand and analysing the trajectories of hand positions. It's difficult to recognize the shape of a character without discriminating effective strokes from all drawing strokes. We detect end points from input trajectories of a syllable with camera system and localize strokes by using detected end points. Then we classify the patterns of the extracted strokes into eight classes and finally into two categories of stroke that is part of syllable and not. We only draw the strokes that are parts of syllable and can display a character. We can get 88.3% in classification accuracy of stroke patterns and 91.1% in stroke type classification.

A method for image-based shadow interaction with virtual objects

  • Ha, Hyunwoo;Ko, Kwanghee
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.26-37
    • /
    • 2015
  • A lot of researchers have been investigating interactive portable projection systems such as a mini-projector. In addition, in exhibition halls and museums, there is a trend toward using interactive projection systems to make viewing more exciting and impressive. They can also be applied in the field of art, for example, in creating shadow plays. The key idea of the interactive portable projection systems is to recognize the user's gesture in real-time. In this paper, a vision-based shadow gesture recognition method is proposed for interactive projection systems. The gesture recognition method is based on the screen image obtained by a single web camera. The method separates only the shadow area by combining the binary image with an input image using a learning algorithm that isolates the background from the input image. The region of interest is recognized with labeling the shadow of separated regions, and then hand shadows are isolated using the defect, convex hull, and moment of each region. To distinguish hand gestures, Hu's invariant moment method is used. An optical flow algorithm is used for tracking the fingertip. Using this method, a few interactive applications are developed, which are presented in this paper.

3D Object Location Identification Using Finger Pointing and a Robot System for Tracking an Identified Object (손가락 Pointing에 의한 물체의 3차원 위치정보 인식 및 인식된 물체 추적 로봇 시스템)

  • Gwak, Dong-Gi;Hwang, Soon-Chul;Ok, Seo-Won;Yim, Jung-Sae;Kim, Dong Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.703-709
    • /
    • 2015
  • In this work, a robot aimed at grapping and delivering an object by using a simple finger-pointing command from a hand- or arm-handicapped person is introduced. In this robot system, a Leap Motion sensor is utilized to obtain the finger-motion data of the user. In addition, a Kinect sensor is also used to measure the 3D (Three Dimensional)-position information of the desired object. Once the object is pointed at through the finger pointing of the handicapped user, the exact 3D information of the object is determined using an image processing technique and a coordinate transformation between the Leap Motion and Kinect sensors. It was found that the information obtained is transmitted to the robot controller, and that the robot eventually grabs the target and delivers it to the handicapped person successfully.

A study on Prevent fingerprints Collection in High resolution Image (고해상도로 찍은 이미지에서의 손가락 지문 채취 방지에 관한 연구)

  • Yoon, Won-Seok;Kim, Sang-Geun
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.6
    • /
    • pp.19-27
    • /
    • 2020
  • In this study, Developing high resolution camera and Social Network Service sharing image can be easily getting images, it cause about taking fingerprints to easy from images. So I present solution about prevent to taking fingerprints. this technology is develop python using to opencv, blur libraries. First of all 'Hand Key point Detection' algorithm is used to locate the hand in the image. Using this algorithm can be find finger joints that can be protected while minimizing damage in the original image by using the coordinates of separate blurring the area of fingerprints in the image. from now on the development of accurate finger tracking algorithms, fingerprints will be protected by using technology as an internal option for smartphone camera apps from high resolution images.

A hybrid navigation system of underwater vehicles using fuzzy inferrence algorithm (퍼지추론을 이용한 무인잠수정의 하이브리드 항법 시스템)

  • 이판묵;이종무;정성욱
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.170-179
    • /
    • 1997
  • This paper presents a hybrid navigation system for AUV to locate its position precisely in rough sea. The tracking system is composed of various sensors such as an inclinometer, a tri-axis magnetometer, a flow meter, and a super short baseline(SSBL) acoustic position tracking system. Due to the inaccuracy of the attitude sensors, the heading sensor and the flowmeter, the predicted position slowly drifts and the estimation error of position becomes larger. On the other hand, the measured position is liable to change abruptly due to the corrupted data of the SSBL system in the case of low signal to noise ratio or large ship motions. By introducing a sensor fusion technique with the position data of the SSBL system and those of the attitude heading flowmeter reference system (AHFRS), the hybrid navigation system updates the three-dimensional position robustly. A Kalman filter algorithm is derived on the basis of the error models for the flowmeter dynamics with the use of the external measurement from the SSBL. A failure detection algorithm decides the confidence degree of external measurement signals by using a fuzzy inference. Simulation is included to demonstrate the validity of the hybrid navigation system.

  • PDF

Assessment of discomfort in elbow motion from driver posture (운전자 자세에 따른 팔꿈치 동작의 불편도 평가)

  • Tak, Tae-Oh;Lee, Pyoung-Rim
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.265-272
    • /
    • 2001
  • The human arm is modeled by three rigid bodies(the upper arm, the forearm and the hand)with seven degree of freedom(three in the shoulder, two in the elbow and two in the wrist). The objective of this work is to present a method to determine the three-dimensional kinematics of the human elbow joint using a magnetic tracking device. Euler angle were used to determine the elbow flexion-extension, and the pronation-supination. The elbow motion for the various driving conditions is measured through the driving test using a simulator. Discomfort levels of elbow joint motions were obtained as discomfort functions, which were based on subjects' perceived discomfort level estimated by magnitude estimation. The results showed that the discomfort posture of elbow joint motions occurred in the driving motion.

  • PDF

Radar Signal Processor Design Using FPGA (FPGA를 이용한 레이더 신호처리 설계)

  • Ha, Changhun;Kwon, Bojun;Lee, Mangyu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.482-490
    • /
    • 2017
  • The radar signal processing procedure is divided into the pre-processing such as frequency down converting, down sampling, pulse compression, and etc, and the post-processing such as doppler filtering, extracting target information, detecting, tracking, and etc. The former is generally designed using FPGA because the procedure is relatively simple even though there are large amounts of ADC data to organize very quickly. On the other hand, in general, the latter is parallel processed by multiple DSPs because of complexity, flexibility and real-time processing. This paper presents the radar signal processor design using FPGA which includes not only the pre-processing but also the post-processing such as doppler filtering, bore-sight error, NCI(Non-Coherent Integration), CFAR(Constant False Alarm Rate) and etc.

Hand Motion Gesture Recognition at A Distance with Skin-color Detection and Feature Points Tracking (피부색 검출 및 특징점 추적을 통한 원거리 손 모션 제스처 인식)

  • Yun, Jong-Hyun;Kim, Sung-Young
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.594-596
    • /
    • 2012
  • 본 논문에서는 손 모션에 대하여 피부색 검출을 기반으로 전역적인 모션을 추적하고 모션 벡터를 생성하여 제스처를 인식하는 방법을 제안한다. 추적을 위하여 Shi-Tomasi 특징점 검출 방법과 Lucas-Kanade 옵티컬 플로우 추정 방법을 사용한다. 손 모션을 추적하는 경우 손의 모양이 다양하게 변화하므로 초기에 검출된 특징점을 계속적으로 추적하는 일반적인 방법으로는 손의 모션을 제대로 추적할 수 없다. 이에 본 논문에서는 프레임마다 새로운 특징점을 검출한 후 옵티컬 플로우를 추정하고 이상치(outlier)를 제거하여 손 모양의 변화에도 추적을 통한 모션 벡터 생성이 가능하도록 한다. 모션 벡터들로 인공 신경망을 사용한 판별 과정을 수행하여 최종적으로 손 모션 제스처에 대한 인식이 가능하도록 한다.

Video Analysis System for Action and Emotion Detection by Object with Hierarchical Clustering based Re-ID (계층적 군집화 기반 Re-ID를 활용한 객체별 행동 및 표정 검출용 영상 분석 시스템)

  • Lee, Sang-Hyun;Yang, Seong-Hun;Oh, Seung-Jin;Kang, Jinbeom
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.89-106
    • /
    • 2022
  • Recently, the amount of video data collected from smartphones, CCTVs, black boxes, and high-definition cameras has increased rapidly. According to the increasing video data, the requirements for analysis and utilization are increasing. Due to the lack of skilled manpower to analyze videos in many industries, machine learning and artificial intelligence are actively used to assist manpower. In this situation, the demand for various computer vision technologies such as object detection and tracking, action detection, emotion detection, and Re-ID also increased rapidly. However, the object detection and tracking technology has many difficulties that degrade performance, such as re-appearance after the object's departure from the video recording location, and occlusion. Accordingly, action and emotion detection models based on object detection and tracking models also have difficulties in extracting data for each object. In addition, deep learning architectures consist of various models suffer from performance degradation due to bottlenects and lack of optimization. In this study, we propose an video analysis system consists of YOLOv5 based DeepSORT object tracking model, SlowFast based action recognition model, Torchreid based Re-ID model, and AWS Rekognition which is emotion recognition service. Proposed model uses single-linkage hierarchical clustering based Re-ID and some processing method which maximize hardware throughput. It has higher accuracy than the performance of the re-identification model using simple metrics, near real-time processing performance, and prevents tracking failure due to object departure and re-emergence, occlusion, etc. By continuously linking the action and facial emotion detection results of each object to the same object, it is possible to efficiently analyze videos. The re-identification model extracts a feature vector from the bounding box of object image detected by the object tracking model for each frame, and applies the single-linkage hierarchical clustering from the past frame using the extracted feature vectors to identify the same object that failed to track. Through the above process, it is possible to re-track the same object that has failed to tracking in the case of re-appearance or occlusion after leaving the video location. As a result, action and facial emotion detection results of the newly recognized object due to the tracking fails can be linked to those of the object that appeared in the past. On the other hand, as a way to improve processing performance, we introduce Bounding Box Queue by Object and Feature Queue method that can reduce RAM memory requirements while maximizing GPU memory throughput. Also we introduce the IoF(Intersection over Face) algorithm that allows facial emotion recognized through AWS Rekognition to be linked with object tracking information. The academic significance of this study is that the two-stage re-identification model can have real-time performance even in a high-cost environment that performs action and facial emotion detection according to processing techniques without reducing the accuracy by using simple metrics to achieve real-time performance. The practical implication of this study is that in various industrial fields that require action and facial emotion detection but have many difficulties due to the fails in object tracking can analyze videos effectively through proposed model. Proposed model which has high accuracy of retrace and processing performance can be used in various fields such as intelligent monitoring, observation services and behavioral or psychological analysis services where the integration of tracking information and extracted metadata creates greate industrial and business value. In the future, in order to measure the object tracking performance more precisely, there is a need to conduct an experiment using the MOT Challenge dataset, which is data used by many international conferences. We will investigate the problem that the IoF algorithm cannot solve to develop an additional complementary algorithm. In addition, we plan to conduct additional research to apply this model to various fields' dataset related to intelligent video analysis.