• Title/Summary/Keyword: Hand Pose Estimation

Search Result 23, Processing Time 0.035 seconds

Fast Hand Pose Estimation with Keypoint Detection and Annoy Tree (Keypoint Detection과 Annoy Tree를 사용한 2D Hand Pose Estimation)

  • Lee, Hui-Jae;Kang Min-Hye
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.277-278
    • /
    • 2021
  • 최근 손동작 인식에 대한 연구들이 활발하다. 하지만 대부분 Depth 정보를 포함한3D 정보를 필요로 한다. 이는 기존 연구들이 Depth 카메라 없이는 동작하지 않는다는 한계점이 있다는 것을 의미한다. 본 프로젝트는 Depth 카메라를 사용하지 않고 2D 이미지에서 Hand Keypoint Detection을 통해 손동작 인식을 하는 방법론을 제안한다. 학습 데이터 셋으로 Facebook에서 제공하는 InterHand2.6M 데이터셋[1]을 사용한다. 제안 방법은 크게 두 단계로 진행된다. 첫째로, Object Detection으로 Hand Detection을 수행한다. 데이터 셋이 어두운 배경에서 촬영되어 실 사용 환경에서 Detection 성능이 나오지 않는 점을 해결하기 위한 이미지 합성 Augmentation 기법을 제안한다. 둘째로, Keypoint Detection으로 21개의 Hand Keypoint들을 얻는다. 실험을 통해 유의미한 벡터들을 생성한 뒤 Annoy (Approximate nearest neighbors Oh Yeah) Tree를 생성한다. 생성된 Annoy Tree들로 후처리 작업을 거친 뒤 최종 Pose Estimation을 완료한다. Annoy Tree를 사용한 Pose Estimation에서는 NN(Neural Network)을 사용한 것보다 빠르며 동등한 성능을 냈다.

  • PDF

Enhanced Sign Language Transcription System via Hand Tracking and Pose Estimation

  • Kim, Jung-Ho;Kim, Najoung;Park, Hancheol;Park, Jong C.
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.3
    • /
    • pp.95-101
    • /
    • 2016
  • In this study, we propose a new system for constructing parallel corpora for sign languages, which are generally under-resourced in comparison to spoken languages. In order to achieve scalability and accessibility regarding data collection and corpus construction, our system utilizes deep learning-based techniques and predicts depth information to perform pose estimation on hand information obtainable from video recordings by a single RGB camera. These estimated poses are then transcribed into expressions in SignWriting. We evaluate the accuracy of hand tracking and hand pose estimation modules of our system quantitatively, using the American Sign Language Image Dataset and the American Sign Language Lexicon Video Dataset. The evaluation results show that our transcription system has a high potential to be successfully employed in constructing a sizable sign language corpus using various types of video resources.

An Improved Approach for 3D Hand Pose Estimation Based on a Single Depth Image and Haar Random Forest

  • Kim, Wonggi;Chun, Junchul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3136-3150
    • /
    • 2015
  • A vision-based 3D tracking of articulated human hand is one of the major issues in the applications of human computer interactions and understanding the control of robot hand. This paper presents an improved approach for tracking and recovering the 3D position and orientation of a human hand using the Kinect sensor. The basic idea of the proposed method is to solve an optimization problem that minimizes the discrepancy in 3D shape between an actual hand observed by Kinect and a hypothesized 3D hand model. Since each of the 3D hand pose has 23 degrees of freedom, the hand articulation tracking needs computational excessive burden in minimizing the 3D shape discrepancy between an observed hand and a 3D hand model. For this, we first created a 3D hand model which represents the hand with 17 different parts. Secondly, Random Forest classifier was trained on the synthetic depth images generated by animating the developed 3D hand model, which was then used for Haar-like feature-based classification rather than performing per-pixel classification. Classification results were used for estimating the joint positions for the hand skeleton. Through the experiment, we were able to prove that the proposed method showed improvement rates in hand part recognition and a performance of 20-30 fps. The results confirmed its practical use in classifying hand area and successfully tracked and recovered the 3D hand pose in a real time fashion.

RGB Camera-based Real-time 21 DoF Hand Pose Tracking (RGB 카메라 기반 실시간 21 DoF 손 추적)

  • Choi, Junyeong;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.19 no.6
    • /
    • pp.942-956
    • /
    • 2014
  • This paper proposes a real-time hand pose tracking method using a monocular RGB camera. Hand tracking has high ambiguity since a hand has a number of degrees of freedom. Thus, to reduce the ambiguity the proposed method adopts the step-by-step estimation scheme: a palm pose estimation, a finger yaw motion estimation, and a finger pitch motion estimation, which are performed in consecutive order. Assuming a hand to be a plane, the proposed method utilizes a planar hand model, which facilitates a hand model regeneration. The hand model regeneration modifies the hand model to fit a current user's hand, and improves robustness and accuracy of the tracking results. The proposed method can work in real-time and does not require GPU-based processing. Thus, it can be applied to various platforms including mobile devices such as Google Glass. The effectiveness and performance of the proposed method will be verified through various experiments.

Robust Estimation of Hand Poses Based on Learning (학습을 이용한 손 자세의 강인한 추정)

  • Kim, Sul-Ho;Jang, Seok-Woo;Kim, Gye-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1528-1534
    • /
    • 2019
  • Recently, due to the popularization of 3D depth cameras, new researches and opportunities have been made in research conducted on RGB images, but estimation of human hand pose is still classified as one of the difficult topics. In this paper, we propose a robust estimation method of human hand pose from various input 3D depth images using a learning algorithm. The proposed approach first generates a skeleton-based hand model and then aligns the generated hand model with three-dimensional point cloud data. Then, using a random forest-based learning algorithm, the hand pose is strongly estimated from the aligned hand model. Experimental results in this paper show that the proposed hierarchical approach makes robust and fast estimation of human hand posture from input depth images captured in various indoor and outdoor environments.

NATURAL INTERACTION WITH VIRTUAL PET ON YOUR PALM

  • Choi, Jun-Yeong;Han, Jae-Hyek;Seo, Byung-Kuk;Park, Han-Hoon;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.341-345
    • /
    • 2009
  • We present an augmented reality (AR) application for cell phone where users put a virtual pet on their palms and play/interact with the pet by moving their hands and fingers naturally. The application is fundamentally based on hand/palm pose recognition and finger motion estimation, which is the main concern in this paper. We propose a fast and efficient hand/palm pose recognition method which uses natural features (e.g. direction, width, contour shape of hand region) extracted from a hand image with prior knowledge for hand shape or geometry (e.g. its approximated shape when a palm is open, length ratio between palm width and pal height). We also propose a natural interaction method which recognizes natural motion of fingers such as opening/closing palm based on fingertip tracking. Based on the proposed methods, we developed and tested the AR application on an ultra-mobile PC (UMPC).

  • PDF

2D and 3D Hand Pose Estimation Based on Skip Connection Form (스킵 연결 형태 기반의 손 관절 2D 및 3D 검출 기법)

  • Ku, Jong-Hoe;Kim, Mi-Kyung;Cha, Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1574-1580
    • /
    • 2020
  • Traditional pose estimation methods include using special devices or images through image processing. The disadvantage of using a device is that the environment in which the device can be used is limited and costly. The use of cameras and image processing has the advantage of reducing environmental constraints and costs, but the performance is lower. CNN(Convolutional Neural Networks) were studied for pose estimation just using only camera without these disadvantage. Various techniques were proposed to increase cognitive performance. In this paper, the effect of the skip connection on the network was experimented by using various skip connections on the joint recognition of the hand. Experiments have confirmed that the presence of additional skip connections other than the basic skip connections has a better effect on performance, but the network with downward skip connections is the best performance.

An Optimized Hand Pose Estimation in Wearable Wrist-Attached RGB Camera (손목 부착형 웨어러블 RGB 카메라에 최적화된 손 자세 추정기술)

  • Lee, Jeongho;Choi, Changhwan;Min, Jaeeun;Choi, Younggeun;Choi, Sang-Il
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.31-34
    • /
    • 2022
  • 본 논문에서는 손목 부착형 웨어러블(Wearable) RGB 카메라를 통해 취득한 손 이미지에 최적화된 손 자세 추정모델과 학습방법을 제안한다. 최근 의료분야에서 활발하게 인공지능이 사용되고 있으며 그 중 이미지 인식을 중심으로 하는 진단 분야[1]가 괄목할만한 성과를 보인다. 본 연구에서는 웨어러블 카메라를 통해 얻은 손 자세를 활용하여 질병 진단에 적용할 계획이다. 또한, 본 연구수행을 통해 질병진단에 필요한 데이터 측정비용 절감 및 개인 맞춤형 진단서비스를 제공할 것으로 기대된다.

  • PDF

The Estimation of Hand Pose Based on Mean-Shift Tracking Using the Fusion of Color and Depth Information for Marker-less Augmented Reality (비마커 증강현실을 위한 색상 및 깊이 정보를 융합한 Mean-Shift 추적 기반 손 자세의 추정)

  • Lee, Sun-Hyoung;Hahn, Hern-Soo;Han, Young-Joon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.7
    • /
    • pp.155-166
    • /
    • 2012
  • This paper proposes a new method of estimating the hand pose through the Mean-Shift tracking algorithm using the fusion of color and depth information for marker-less augmented reality. On marker-less augmented reality, the most of previous studies detect the hand region using the skin color from simple experimental background. Because finger features should be detected on the hand, the hand pose that can be measured from cameras is restricted considerably. However, the proposed method can easily detect the hand pose from complex background through the new Mean-Shift tracking method using the fusion of the color and depth information from 3D sensor. The proposed method of estimating the hand pose uses the gravity point and two random points on the hand without largely constraints. The proposed Mean-Shift tracking method has about 50 pixels error less than general tracking method just using color value. The augmented reality experiment of the proposed method shows results of its performance being as good as marker based one on the complex background.

Fuzzy rule-based Hand Motion Estimation for A 6 Dimensional Spatial Tracker

  • Lee, Sang-Hoon;Kim, Hyun-Seok;Suh, Il-Hong;Park, Myung-Kwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.82-86
    • /
    • 2004
  • A fuzzy rule-based hand-motion estimation algorithm is proposed for a 6 dimensional spatial tracker in which low cost accelerometers and gyros are employed. To be specific, beginning and stopping of hand motions needs to be accurately detected to initiate and terminate integration process to get position and pose of the hand from accelerometer and gyro signals, since errors due to noise and/or hand-shaking motions accumulated by integration processes. Fuzzy rules of yes or no of hand-motion-detection are here proposed for rules of accelerometer signals, and sum of derivatives of accelerometer and gyro signals. Several experimental results and shown to validate our proposed algorithms.

  • PDF