

NATURAL INTERACTION WITH VIRTUAL PET ON YOUR PALM

Junyeong Choi, Jae-Hyek Han, Byung-Kuk Seo, Hanhoon Park, and Jong-Il Park

Department of Electronics and Computer Engineering

Hanyang University
Seoul, Korea

E-mail: {hooeh, turbostar, nwseoweb, hanuni}@mr.hanyang.ac.kr, jipark@hanyang.ac.kr

ABSTRACT

We present an augmented reality (AR) application for cell
phone where users put a virtual pet on their palms and
play/interact with the pet by moving their hands and
fingers naturally. The application is fundamentally based
on hand/palm pose recognition and finger motion
estimation, which is the main concern in this paper. We
propose a fast and efficient hand/palm pose recognition
method which uses natural features (e.g. direction, width,
contour shape of hand region) extracted from a hand image
with prior knowledge for hand shape or geometry (e.g. its
approximated shape when a palm is open, length ratio
between palm width and pal height). We also propose a
natural interaction method which recognizes natural
motion of fingers such as opening/closing palm based on
fingertip tracking. Based on the proposed methods, we
developed and tested the AR application on an ultra-mobile
PC (UMPC).

Keywords: - Augmented Reality, Mobile Application,
Hand Pose Estimation

1. INTRODUCTION

The processing power of the mobile devices such as cell
phone and personal digital assistant (PDA) has been
steadily increased and their portability has provoked
augmented reality (AR) researchers to consider them as a
powerful platform. In this regard, recently, a number of
mobile AR applications have been developed, e.g.
providing the direction and location of crosswalks [7],
showing the location of underground water pipes [8], and
tracking multiple people for robot navigation [11].

In this paper, we present a new mobile AR application,
called virtual pet on your palm. As shown in Fig. 1, a
virtual pet is put on one’s palm, and then he/she interacts
with it by moving his/her hand or fingers, e.g. touching,
stroking, etc. A few years ago, Lee and Höllerer proposed a
similar application [2] where users can inspect an AR
object put on his/her hand. However, they paid less
attention on providing user interaction with the AR object
because user interaction was not an important issue in their
application. In contrast, in our application, natural
interaction with a virtual pet is an important factor and we
use finger motions as a natural interface.

Our application is fundamentally based on two methods.

One is a palm pose estimation method for estimating the
virtual pet’s pose. The other is a fingertip tracking method
for interacting with the virtual pet. These two methods are
the main concern of this paper.

Fig. 1. Virtual pet on your palm.

There have been lots of palm pose estimation methods and
fingertip tracking methods in the literature. The palm pose
estimation methods can be divided into 3-D model based
methods [13, 15, 16] and model-free methods. 3-D model
based methods allow free finger motion but are not suitable
for mobile devices because they are based on complicated
processes in many steps and thus are difficult to work in
real-time [9]. One of model-free methods uses a color band
for fast and easy hand tracking [12]. However, they may
make users feel inconvenient by enforcing wearing band
on his/her wrist. Some model-free methods [14, 17, 18, 19]
use hand silhouette images for efficient palm pose
estimation. However, they suffer from self-occlusion
problem. Also, finger’s motion will change the hand
silhouette and thus influence the palm pose in a wrong
way.

The fingertip tracking methods can be divided into
device-based methods [20, 21] and vision-based methods
[10, 22]. Device-based methods can track user’s fingers
robustly in uncontrolled environments but may make users
feel inconvenient by enforcing wearing devices on his/her
fingers. Most vision-based methods can track user’s fingers
fast and accurately in well-controlled environments but
suffer from the inherent problems such as self-occlusion
and cluttered background in less-controlled environments.

Keeping the pros and cons of the palm pose estimation
methods and fingertip tracking methods in mind, we
propose a new palm pose estimation method. Our method
is basically a model-free and silhouette-based one and
estimates palm pose based on natural features (starting

341

point of the forearm, direction, and convexity defect point
between the thumb and the indexfinger) which are rarely
influenced by finger’s motions. Because the proposed
method minimizes the influence of finger’s motions, it
exactly estimates palm pose in situation of freely moving
fingers. This advantage can also allow natural interaction
based on finger motions. To track finger motions, we
propose a fast and efficient fingertip tracking method
which is also a silhouette-based one and estimates the
partial contour angles of hand silhouette.

2. PALM POSE ESTIMATION

To augment a 3-D virtual pet on user’s palm, the hand
region silhouette should be detected first in a scene image.
Note that in our method, the hand region includes both a
hand and a part of a forearm. The proposed method detects
the hand region by segmenting the scene image using the
generalized statistical color model [1] and eliminates
skin-colored background using Distance Transform [3].
With the segmented hand region, hand pose (i.e. position
and orientation) is estimated by the following procedure.

a. Find a mean direction of the hand region by applying
least square line fitting to its contour points. Then,
separate the palm from the forearm using the mean
points which are computed by two points where the
hand region contour meets with the line orthogonal
to the mean direction. The starting point of the
forearm is determined by a point where differentials

of the mean points are starting to be constant.

Fig. 2. Process flow for palm pose estimation. (a) captured scene, (b) segmented hand region
silhouette, (c) contour of the hand region, (d) mean direction of the hand region (green line), (e)
mean points of the hand region (blue points), (f) distance map, (g) separation the palm from the
forearm, (h) dominant direction of the palm, (i) detection of the convexity defect point between the
thumb and the indexfinger, (j) pose estimation of the hand. (k) rendering a virtual pet.

b. Find the palm direction by applying least square line
fitting to the mean points of the palm region.

c. Compute the ratio of the palm’s reference lengths by

using the convexity defect point between the thumb,
the indexfinger, and the starting point of the forearm.

d. Determine a projection model using a ratio of the

palm’s reference lengths. Then, the hand pose is
estimated and a 3-D virtual pet is rendered on the
palm of the hand

This process flow is also depicted in Fig. 2 and the detailed
explanation is given in the following sub-sections.

2.1 Hand Region Segmentation

For segmenting the hand region from a scene image, we
use the generalized statistical color model for classifying
skin color pixels from non-skin color pixels. Based on the
model, each pixel is determined to be in the hand region if
the skin color likelihood is larger than a constant threshold.
Fig. 3-(b) shows a result of skin color detection. As shown
in Fig. 3-(b), background which has a pixel value similar to
skin is classified to skin. Because we assume that users see
the right hand through the mobile screen at a close distance
holding a mobile device on the left hand, the majority

342

portion of the skin color segmented image is the hand
region. In order to detect the majority portion, we use
Distance Transform [3] (Fig. 3-(c)). Fig. 3-(d) shows the
detected hand silhouette image by using the Distance
Transform.

Fig. 4. (a) Mean direction (green line) and mean
points (blue points), (b) hand region silhouette, (c)
the y-values of green points indicate the distances
between the two orthogonal points and their mean
points, (d) palm direction (blue line).

Fig. 3. (a) Captured scene, (b) skin color
segmentation result, (c) distance transform, (d)
detected hand region silhouette.

The third step is detecting the convexity defect point
between the thumb and the indexfinger. The candidate
points (Fig. 5-(a)) of the convexity defect point are
detected from the contour of hand silhouette using a
curvature-based algorithm similar to the one described in
[4, 10]. If the angle between the line PiPi+l and the line PiPi-l
is lower than a threshold value, the point Pi is classified to
a candidate point of the convexity defect point. Here, the
points Pi+l and Pi-l indicate the points which are l-indices
distant from the point Pi, respectively. The angle of the
point Pi is computed by dot product of the line PiPi+l and
the line PiPi-l as

2.2 Pose Estimation

Detecting the starting point of the forearm is the first step
for estimating palm pose. The starting point detection
consists of four steps. First, we find the mean direction of
the hand region (green line in Fig. 4-(a)). The mean
direction is found by applying line fitting to the points on
silhouette contour as shown in Fig. 4-(b). Second, we find
the mean points (blue points in Fig. 4-(a)) from two
orthogonal points where the hand silhouette contour meets
with the line orthogonal to the mean direction. Then, we
compute the distances (Fig. 4-(c)) between two orthogonal
points where the hand silhouette contour meets with the
line orthogonal to the local direction of the mean points.
Here, the local direction is computed by line fitting of a
target point and its neighborhood points (when the number
of neighborhood points are about 15, it works well in
practice). Because of the difference between the palm
direction (blue line in Fig. 4-(d)) and the mean direction of
hand region, using the local direction of the mean points is
more correct than using the global mean direction of hand
region. Finally, the starting point of the forearm is
determined as a point where differentials of the distances
(fig.4-(c)) are starting to be constant (blue arrow between
Figs. 4-(a) and 4-(c)) after starting from the max point (red
arrow between Figs. 4-(a) and 4-(c)).

liilii

liilii
il

PPPP
PPPPp

+−

+− ⋅
=)(θ (1)

For adapting to scaling, we compute the angles using
various l values. The points (blue points in Fig. 5-(a))
which are relatively close to the starting point of the
forearm are neighborhoods of the convexity defect point.
For detecting the accurate location of the convexity defect
point, we fit the relatively close candidate points to an
ellipse (Fig. 5-(b)) by using least square fitting offered by
OpenCV [5]. We then compute the intersection points of
the ellipse’s major axis with its edge and pick the one
closer to the starting point of forearm.

The next step is finding the palm direction. Because the
mean direction of hand region is not determined by only
palm direction but also forearm direction, using the mean
direction of hand region as it is may cause wrong palm
direction. Thus, palm direction is computed by using only
the mean points (blue points in Fig. 4-(a)) which are upper
than the starting point of the forearm. As shown in Fig.
4-(d), the palm direction is accurately computed even if the
palm direction significantly differs from the mean direction
of hand region.

Fig. 5. (a) Candidate points of the convexity defect
point, (b) ellipse fitting.

 Finally, we estimate the palm pose using the palm direction,

343

the starting point of forearm, and the convexity defect
point found before. A palm width (L2 in Fig. 6-(a)) is
computed by the distance between two orthogonal points
where the line, which is orthogonal to the palm direction
(L3 in Fig. 6-(a)) and passes through the convexity defect
point, intersects with the hand contour. A palm height (L1
in Fig. 6-(a)) is computed by the distance between height
(L2 in Fig. 6-(a)) and the starting point of forearm. Then,
the palm pose is estimated from the palm height and width
by the following procedures.

a. Consider a virtual 3-D rectangle model for estimating

the palm pose. 3-D coordinates (x, y, z) of the
rectangle’s four corners are computed using the palm
width and height.

Fig. 6. Rectangle model projected onto a palm with
different poses.

 a-1. 3-D rectangle model’s height and width have
to equal in the front view. However, as shown
in Fig.6-(a), the palm height (L1) and the
palm width (L2) are different in the front view
of palm. Thus, multiply the palm height by a
constant a (set to 1.4742 in our experiments)
for making the width and the height same.

a-2. Decide the coordinates by the follow
equation.

.),min(),(max(

,2/*,2/

),,,(),,,(
),,,(),,,(

,
),,,(),,,(
),,,(),,,(

,

22

43

21

43

21

HWHWZ

aheightHwidthW
where

ZHWPZHWP
ZHWPZHWP

otherwise
ZHWPZHWP
ZHWPZHWP

HWif

−=

==

−−=−−=
−=−=

−=−−=
−=−−=

>

(2)

b. Project four corner points onto a plane z=0. Then,

rotate the points about the angle between the palm
direction (L3) and the north direction (N).

c. Translate the center of the four projected points into

that of the palm’s center where the width and height
intersects with each other. The projected rectangle
model is correctly located on a user’s palm (Fig. 6).

d. Use the function arGetTransMat() in ARToolKit [6]

for computing the palm pose from the center point,
four corner points, and four edge lines of the
projected model.

As shown in Fig. 7, a virtual teapot is correctly drawn on a
user’s palm once the palm pose is estimated.

Fig. 7. Virtual teapot on a palm with different poses.

3. Finger Motion Detection

We use a simple method for tracking finger motions, which
is similar to the convexity defect point detection method in
Section 2.2. First, we detect the candidate fingertip points
using the curvature-based algorithm as shown in Fig. 8.
Next, we find the points (blue points) which are relatively
away from the starting point of the forearm. From the blue
points, we find the exact location of fingertips using ellipse
fitting. When the user stretches his/her hand, fingertips are
easily detected using the method explained here. However,
if the user clenches his/her fist, fingertips will not be
detected. Therefore, we can recognize if the user stretches
his/her hand or clenches his/her fist using the number of
blue points.

Fig. 8. Candidate fingertip points.

The preliminary results are shown in Fig. 9. In our
demonstration on a UMPC (Sony, VGN-UX27LN), when
the palm of a hand is opened, a flower is opened and a bee
is coming out and bussing around it. On the other hand,
when the palm of the hand is closed, the flower is closed
and the bee disappears

344

[5] Intel Corporation, Open Source Computer Vision
Library reference manual, 2000.

[6] ARToolkit, available at:
http://www.hitl.washington.edu/artoolkit/.

[7] V. Ivanchenko, J. Coughlan, and H. Shen, “Detecting
and locating crosswalks using a camera phone,” Proc.
of CVPR’08, 2008.

[8] G. Schall, H. Grabner, M. Grabner, P. Wohlhart, D.
Schmalstieg, and H. Bischof, “3D tracking in
unknown environments using on-line keypoint
learning for mobile augmented reality,” Proc. of
CVPR’08, 2008.

[9] A. Erol, G. Bebis, M. Nicolescu, R. D. Boyle, and X.
Twombly, “Vision-based hand pose estimation : A
review,” Computer Vision and Image Understanding,
pp. 52-73, 2007.

[10] K. Oka, Y. Sato, and H. Koike, “Real-time fingertip
tracking and gesture recognition,” IEEE Computer
Graphics and Applications, vol. 22 no. 6, pp. 64–71,
2002.

[11] A. Ess, B. Leibe, K. Schindler, and L. V. Gool, “A
mobile vision system for robust multi-person
tracking,” Proc of CVPR’08, 2008.

Fig. 9. Interaction with a virtual flower using finger
motion.

[12] R. Lockton and A. Fitzgibbon, “Real-time gesture
recognition using deterministic boosting,” Proc. of
BMVC’02, pp. 817-826, 2002.

4. Conclusion and Future Works

[13] V. Athitsos and S. Sclaroff, “Database indexing

methods for 3D hand pose estimation,” Proc. of
Gesture Workshop’03, pp. 288-299, 2003.

This paper proposes a fast and efficient palm pose
estimation method and a natural interaction method for
mobile AR application called virtual pet on your palm. Our
palm pose estimation method could estimate palm pose
exactly and fast on mobile platform. Our interaction
method could provide users natural interaction with virtual
pet on their palm by moving their fingers.

[14] L. Bretzner, I. Laptev, and T. Lindeberg, “Hand
gesture recognition using multi-scale colour features,
hierarchical models and particle filtering,” Proc. of
FG’02, pp. 405-410, 2002.

[15] B. Stenger, P. R. S. Mendonca, and R. Cipolla,
“Model-based hand tracking using an unscented
Kalman filter,” Proc. of British Machine Vision
Conference’01, vol. I, pp 63-72, 2001.

Our current system is limited to basic interactions such as
open/closing palm, but we will try to provide more natural
interactions in the near future. Also, occlusion processing
will be provided when users put their fingers over the
virtual pet.

[16] S. Lu, D. Metaxas, D. Samaras, and J. Oliensis,
“Using multiple cues for hand tracking and model
refinement,” Proc. of CVPR’03, pp. II: 443-450,
2003.

Acknowledgements

[17] C. Schwarz and N. Lobo, “Segment-based hand pose
estimation,” Proc. of 2nd Canadian Conf. Computer
and Robot Vision’05, pp. 42–49, 2005.

This work was supported by the IT R&D program of
MKE/IITA. [2008-F-042-01, Development of
Vision/Image Guided System for Tele-Surgical Robot] [18] J. Segen and S. Kumar, “Shadow gestures: 3D hand

pose estimation using a single camera,” Proc. of
CVPR’99, pp. 479-485, 1999.

REFERENCES

[19] Z. Mo and U. Neumann, “Real-time hand pose
recognition using low-resolution depth images,” Proc.
of CVPR’06, vol. 2, pp. 1499-1505, 2006.

[1] M. J. Jones and J. M. Rehg, “Statistical color models

with application to skin detection,” Proc. of CVPR’99,
pp. 1274–1280, 1999. [20] M. Bezdicek and D. G. Caldwell, “Potable Absolute

Position Tracking System for Human Hand
Fingertips,” Proc. of VC’06, 2006.

[2] T. Lee and T. Höllerer, “Handy AR: Markerless
inspection of augmented reality objects using fingertip
tracking,” Proc. of ISWC’07, 2007. [21] T. Grossman, D. Wigdor and R. Balakrishnan,

“Multi-Finger Gestural Interaction with 3D
Volumetric Displays,” Proc. of UIST’04, 2004.

[3] G. Borgefors, “Distance transformations in digital
images,” Computer Vision, Graphics and Image
Processing, vol. 34, pp. 344–371, 1986. [22] J. Letessier and F. Bérard, “Visual Tracking of Bare

Fingers for Interactive Surfaces,” Proc. of UIST’04,
2004.

[4] A. A. Argyros and M. I. A. Lourakis, “Vision-based
interpretation of hand gestures for remote control of a
computer mouse,” Computer Vision in
Human-Computer Interaction, pp. 40–51, 2006.

345

