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ABSTRACT 
 
We present an augmented reality (AR) application for cell 
phone where users put a virtual pet on their palms and 
play/interact with the pet by moving their hands and 
fingers naturally. The application is fundamentally based 
on hand/palm pose recognition and finger motion 
estimation, which is the main concern in this paper. We 
propose a fast and efficient hand/palm pose recognition 
method which uses natural features (e.g. direction, width, 
contour shape of hand region) extracted from a hand image 
with prior knowledge for hand shape or geometry (e.g. its 
approximated shape when a palm is open, length ratio 
between palm width and pal height). We also propose a 
natural interaction method which recognizes natural 
motion of fingers such as opening/closing palm based on 
fingertip tracking. Based on the proposed methods, we 
developed and tested the AR application on an ultra-mobile 
PC (UMPC). 
 
Keywords: - Augmented Reality, Mobile Application, 
Hand Pose Estimation 
 

1. INTRODUCTION 
 
The processing power of the mobile devices such as cell 
phone and personal digital assistant (PDA) has been 
steadily increased and their portability has provoked 
augmented reality (AR) researchers to consider them as a 
powerful platform. In this regard, recently, a number of 
mobile AR applications have been developed, e.g. 
providing the direction and location of crosswalks [7], 
showing the location of underground water pipes [8], and 
tracking multiple people for robot navigation [11].  
 
In this paper, we present a new mobile AR application, 
called virtual pet on your palm. As shown in Fig. 1, a 
virtual pet is put on one’s palm, and then he/she interacts 
with it by moving his/her hand or fingers, e.g. touching, 
stroking, etc. A few years ago, Lee and Höllerer proposed a 
similar application [2] where users can inspect an AR 
object put on his/her hand. However, they paid less 
attention on providing user interaction with the AR object 
because user interaction was not an important issue in their 
application. In contrast, in our application, natural 
interaction with a virtual pet is an important factor and we 
use finger motions as a natural interface. 
 
Our application is fundamentally based on two methods. 

One is a palm pose estimation method for estimating the 
virtual pet’s pose. The other is a fingertip tracking method 
for interacting with the virtual pet. These two methods are 
the main concern of this paper.  
 

 
Fig. 1. Virtual pet on your palm. 

 
There have been lots of palm pose estimation methods and 
fingertip tracking methods in the literature. The palm pose 
estimation methods can be divided into 3-D model based 
methods [13, 15, 16] and model-free methods. 3-D model 
based methods allow free finger motion but are not suitable 
for mobile devices because they are based on complicated 
processes in many steps and thus are difficult to work in 
real-time [9]. One of model-free methods uses a color band 
for fast and easy hand tracking [12]. However, they may 
make users feel inconvenient by enforcing wearing band 
on his/her wrist. Some model-free methods [14, 17, 18, 19] 
use hand silhouette images for efficient palm pose 
estimation. However, they suffer from self-occlusion 
problem. Also, finger’s motion will change the hand 
silhouette and thus influence the palm pose in a wrong 
way.  
 
The fingertip tracking methods can be divided into 
device-based methods [20, 21] and vision-based methods 
[10, 22]. Device-based methods can track user’s fingers 
robustly in uncontrolled environments but may make users 
feel inconvenient by enforcing wearing devices on his/her 
fingers. Most vision-based methods can track user’s fingers 
fast and accurately in well-controlled environments but 
suffer from the inherent problems such as self-occlusion 
and cluttered background in less-controlled environments. 
 
Keeping the pros and cons of the palm pose estimation 
methods and fingertip tracking methods in mind, we 
propose a new palm pose estimation method. Our method 
is basically a model-free and silhouette-based one and 
estimates palm pose based on natural features (starting 
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point of the forearm, direction, and convexity defect point 
between the thumb and the indexfinger) which are rarely 
influenced by finger’s motions. Because the proposed 
method minimizes the influence of finger’s motions, it 
exactly estimates palm pose in situation of freely moving 
fingers. This advantage can also allow natural interaction 
based on finger motions. To track finger motions, we 
propose a fast and efficient fingertip tracking method 
which is also a silhouette-based one and estimates the 
partial contour angles of hand silhouette. 
 

2. PALM POSE ESTIMATION 
 
To augment a 3-D virtual pet on user’s palm, the hand 
region silhouette should be detected first in a scene image. 
Note that in our method, the hand region includes both a 
hand and a part of a forearm. The proposed method detects 
the hand region by segmenting the scene image using the 
generalized statistical color model [1] and eliminates 
skin-colored background using Distance Transform [3]. 
With the segmented hand region, hand pose (i.e. position 
and orientation) is estimated by the following procedure. 

a. Find a mean direction of the hand region by applying 
least square line fitting to its contour points. Then, 
separate the palm from the forearm using the mean 
points which are computed by two points where the 
hand region contour meets with the line orthogonal 
to the mean direction. The starting point of the 
forearm is determined by a point where differentials 

of the mean points are starting to be constant. 
 

Fig. 2. Process flow for palm pose estimation. (a) captured scene, (b) segmented hand region
silhouette, (c) contour of the hand region, (d) mean direction of the hand region (green line), (e) 
mean points of the hand region (blue points), (f) distance map, (g) separation the palm from the 
forearm, (h) dominant direction of the palm, (i) detection of the convexity defect point between the 
thumb and the indexfinger, (j) pose estimation of the hand. (k) rendering a virtual pet. 
 

b. Find the palm direction by applying least square line 
fitting to the mean points of the palm region. 

 
c. Compute the ratio of the palm’s reference lengths by 

using the convexity defect point between the thumb, 
the indexfinger, and the starting point of the forearm. 

 
d. Determine a projection model using a ratio of the 

palm’s reference lengths. Then, the hand pose is 
estimated and a 3-D virtual pet is rendered on the 
palm of the hand 

 
This process flow is also depicted in Fig. 2 and the detailed 
explanation is given in the following sub-sections. 
 
2.1  Hand Region Segmentation 
 
For segmenting the hand region from a scene image, we 
use the generalized statistical color model for classifying 
skin color pixels from non-skin color pixels. Based on the 
model, each pixel is determined to be in the hand region if 
the skin color likelihood is larger than a constant threshold. 
Fig. 3-(b) shows a result of skin color detection. As shown 
in Fig. 3-(b), background which has a pixel value similar to 
skin is classified to skin. Because we assume that users see 
the right hand through the mobile screen at a close distance 
holding a mobile device on the left hand, the majority 
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portion of the skin color segmented image is the hand 
region. In order to detect the majority portion, we use 
Distance Transform [3] (Fig. 3-(c)). Fig. 3-(d) shows the 
detected hand silhouette image by using the Distance 
Transform. 

 

 

 

Fig. 4. (a) Mean direction (green line) and mean 
points (blue points), (b) hand region silhouette, (c) 
the y-values of green points indicate the distances 
between the two orthogonal points and their mean 
points, (d) palm direction (blue line). 

Fig. 3. (a) Captured scene, (b) skin color 
segmentation result, (c) distance transform, (d) 
detected hand region silhouette. 

 
The third step is detecting the convexity defect point 
between the thumb and the indexfinger. The candidate 
points (Fig. 5-(a)) of the convexity defect point are 
detected from the contour of hand silhouette using a 
curvature-based algorithm similar to the one described in 
[4, 10]. If the angle between the line PiPi+l and the line PiPi-l 
is lower than a threshold value, the point Pi is classified to 
a candidate point of the convexity defect point. Here, the 
points Pi+l and Pi-l indicate the points which are l-indices 
distant from the point Pi, respectively. The angle of the 
point Pi is computed by dot product of the line PiPi+l and 
the line PiPi-l as 

 
2.2  Pose Estimation 
 
Detecting the starting point of the forearm is the first step 
for estimating palm pose. The starting point detection 
consists of four steps. First, we find the mean direction of 
the hand region (green line in Fig. 4-(a)). The mean 
direction is found by applying line fitting to the points on 
silhouette contour as shown in Fig. 4-(b). Second, we find 
the mean points (blue points in Fig. 4-(a)) from two 
orthogonal points where the hand silhouette contour meets 
with the line orthogonal to the mean direction. Then, we 
compute the distances (Fig. 4-(c)) between two orthogonal 
points where the hand silhouette contour meets with the 
line orthogonal to the local direction of the mean points. 
Here, the local direction is computed by line fitting of a 
target point and its neighborhood points (when the number 
of neighborhood points are about 15, it works well in 
practice). Because of the difference between the palm 
direction (blue line in Fig. 4-(d)) and the mean direction of 
hand region, using the local direction of the mean points is 
more correct than using the global mean direction of hand 
region. Finally, the starting point of the forearm is 
determined as a point where differentials of the distances 
(fig.4-(c)) are starting to be constant (blue arrow between 
Figs. 4-(a) and 4-(c)) after starting from the max point (red 
arrow between Figs. 4-(a) and 4-(c)). 
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For adapting to scaling, we compute the angles using 
various l values. The points (blue points in Fig. 5-(a)) 
which are relatively close to the starting point of the 
forearm are neighborhoods of the convexity defect point. 
For detecting the accurate location of the convexity defect 
point, we fit the relatively close candidate points to an 
ellipse (Fig. 5-(b)) by using least square fitting offered by 
OpenCV [5]. We then compute the intersection points of 
the ellipse’s major axis with its edge and pick the one 
closer to the starting point of forearm. 
  

The next step is finding the palm direction. Because the 
mean direction of hand region is not determined by only 
palm direction but also forearm direction, using the mean 
direction of hand region as it is may cause wrong palm 
direction. Thus, palm direction is computed by using only 
the mean points (blue points in Fig. 4-(a)) which are upper 
than the starting point of the forearm. As shown in Fig. 
4-(d), the palm direction is accurately computed even if the 
palm direction significantly differs from the mean direction 
of hand region. 

 

Fig. 5. (a) Candidate points of the convexity defect 
point, (b) ellipse fitting. 

 
 Finally, we estimate the palm pose using the palm direction, 
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the starting point of forearm, and the convexity defect 
point found before. A palm width (L2 in Fig. 6-(a)) is 
computed by the distance between two orthogonal points 
where the line, which is orthogonal to the palm direction 
(L3 in Fig. 6-(a)) and passes through the convexity defect 
point, intersects with the hand contour. A palm height (L1 
in Fig. 6-(a)) is computed by the distance between height 
(L2 in Fig. 6-(a)) and the starting point of forearm. Then, 
the palm pose is estimated from the palm height and width 
by the following procedures. 

 

 
a. Consider a virtual 3-D rectangle model for estimating 

the palm pose. 3-D coordinates (x, y, z) of the 
rectangle’s four corners are computed using the palm 
width and height. 

Fig. 6. Rectangle model projected onto a palm with 
different poses. 

 a-1. 3-D rectangle model’s height and width have 
to equal in the front view. However, as shown 
in Fig.6-(a), the palm height (L1) and the 
palm width (L2) are different in the front view 
of palm. Thus, multiply the palm height by a 
constant a (set to 1.4742 in our experiments) 
for making the width and the height same. 

a-2. Decide the coordinates by the follow 
equation. 
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b. Project four corner points onto a plane z=0. Then, 

rotate the points about the angle between the palm 
direction (L3) and the north direction (N). 

 
c. Translate the center of the four projected points into 

that of the palm’s center where the width and height 
intersects with each other. The projected rectangle 
model is correctly located on a user’s palm (Fig. 6). 

 
d. Use the function arGetTransMat() in ARToolKit [6] 

for computing the palm pose from the center point, 
four corner points, and four edge lines of the 
projected model. 

As shown in Fig. 7, a virtual teapot is correctly drawn on a 
user’s palm once the palm pose is estimated. 
 

 
Fig. 7. Virtual teapot on a palm with different poses. 

 
3. Finger Motion Detection 

  
We use a simple method for tracking finger motions, which 
is similar to the convexity defect point detection method in 
Section 2.2. First, we detect the candidate fingertip points 
using the curvature-based algorithm as shown in Fig. 8. 
Next, we find the points (blue points) which are relatively 
away from the starting point of the forearm. From the blue 
points, we find the exact location of fingertips using ellipse 
fitting. When the user stretches his/her hand, fingertips are 
easily detected using the method explained here. However, 
if the user clenches his/her fist, fingertips will not be 
detected. Therefore, we can recognize if the user stretches 
his/her hand or clenches his/her fist using the number of 
blue points. 

 

 
Fig. 8. Candidate fingertip points. 

  
The preliminary results are shown in Fig. 9. In our 
demonstration on a UMPC (Sony, VGN-UX27LN), when 
the palm of a hand is opened, a flower is opened and a bee 
is coming out and bussing around it. On the other hand, 
when the palm of the hand is closed, the flower is closed 
and the bee disappears 
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Fig. 9. Interaction with a virtual flower using finger 
motion. 
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4. Conclusion and Future Works 

  
[13] V. Athitsos and S. Sclaroff, “Database indexing 

methods for 3D hand pose estimation,” Proc. of 
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This paper proposes a fast and efficient palm pose 
estimation method and a natural interaction method for 
mobile AR application called virtual pet on your palm. Our 
palm pose estimation method could estimate palm pose 
exactly and fast on mobile platform. Our interaction 
method could provide users natural interaction with virtual 
pet on their palm by moving their fingers. 
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gesture recognition using multi-scale colour features, 
hierarchical models and particle filtering,” Proc. of 
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“Model-based hand tracking using an unscented 
Kalman filter,” Proc. of British Machine Vision 
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Our current system is limited to basic interactions such as 
open/closing palm, but we will try to provide more natural 
interactions in the near future. Also, occlusion processing 
will be provided when users put their fingers over the 
virtual pet. 
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“Using multiple cues for hand tracking and model 
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