• Title/Summary/Keyword: Hand Fingers

Search Result 289, Processing Time 0.028 seconds

Development of Intelligent Robot's Hand with Three-Axis Finger Force Sensors for Intelligent Robot (3축 손가락 힘센서를 가진 지능로봇의 지능형 로봇손 개발)

  • Kim, Gab-Soon;Shin, Hi-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.300-305
    • /
    • 2009
  • This paper describes the intelligent robot's hand with three-axis finger force sensors for an intelligent robot. In order to grasp an unknown object safely, it should measure the mass of the object, and determine the grasping force using the mass, then control the robot's fingers with the grasping force. In this paper, the intelligent robot's hand for an intelligent robot was developed. First, the three-axis finger force sensors were designed and manufactured, second, the intelligent robot's hand with three-axis finger force sensors were designed and fabricated, third, the high-speed control system was designed and manufactured using DSP( digital signal processor), finally, the characteristic test to grasp an unknown object safely was carried out. It was confirmed that the developed intelligent robot's hand could grasp an unknown object safely.

Realistic Keyboard Typing Motion Generation Based on Physics Simulation (물리 시뮬레이션에 기반한 사실적인 키보드 타이핑 모션 생성)

  • Jang, Yongho;Eom, Haegwang;Noh, Junyong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.21 no.5
    • /
    • pp.29-36
    • /
    • 2015
  • Human fingers are essential parts of the body that perform complex and detailed motion. Expression of natural finger motion is one of the most important issues in character animation research. Especially, keyboard typing animation is hard to create through the existing animation pipeline because the keyboard typing typically requires a high level of dexterous motion that involves the movement of various joints in a natural way. In this paper, we suggest a method for the generation of realistic keyboard typing motion based on physics simulation. To generate typing motion properly using physics-based simulation, the hand and the keyboard models should be positioned in an allowed range of simulation space, and the typing has to occur at a precise key location according to the input signal. Based on the observation, we incorporate natural tendency that accompanies actual keyboard typing. For example, we found out that the positions of the hands and fingers always assume the default pose, and the idle fingers tend to minimize their motion. We handle these various constraints in one solver to achieve the results of real-time natural keyboard typing simulation. These results can be employed in various animation and virtual reality applications.

A Real-time Hand Pose Recognition Method with Hidden Finger Prediction (은닉된 손가락 예측이 가능한 실시간 손 포즈 인식 방법)

  • Na, Min-Young;Choi, Jae-In;Kim, Tae-Young
    • Journal of Korea Game Society
    • /
    • v.12 no.5
    • /
    • pp.79-88
    • /
    • 2012
  • In this paper, we present a real-time hand pose recognition method to provide an intuitive user interface through hand poses or movements without a keyboard and a mouse. For this, the areas of right and left hands are segmented from the depth camera image, and noise removal is performed. Then, the rotation angle and the centroid point of each hand area are calculated. Subsequently, a circle is expanded at regular intervals from a centroid point of the hand to detect joint points and end points of the finger by obtaining the midway points of the hand boundary crossing. Lastly, the matching between the hand information calculated previously and the hand model of previous frame is performed, and the hand model is recognized to update the hand model for the next frame. This method enables users to predict the hidden fingers through the hand model information of the previous frame using temporal coherence in consecutive frames. As a result of the experiment on various hand poses with the hidden fingers using both hands, the accuracy showed over 95% and the performance indicated over 32 fps. The proposed method can be used as a contactless input interface in presentation, advertisement, education, and game applications.

Designing a Magnetically Controlled Soft Gripper with Versatile Grasping Based on Magneto-Active Elastomer

  • Li, Rui;Li, Xinyan;Wang, Hao;Tang, Xianlun;Li, Penghua;Shou, Mengjie
    • Journal of Information Processing Systems
    • /
    • v.18 no.5
    • /
    • pp.688-700
    • /
    • 2022
  • A composite bionic soft gripper integrated with electromagnets and magneto-active elastomers is designed by combining the structure of the human hand and the snake's behavior of enhancing friction by actively adjusting the scales. A silicon-based polymer containing magnetized hard magnetic particles is proposed as a soft finger, and it can be reversibly bent by adjusting the magnetic field. Experiments show that the length, width, and height of rectangular soft fingers and the volume ratio of neodymium-iron-boron have different effects on bending angle. The flexible fingers with 20 vol% are the most efficient, which can bend to 90° when the magnetic field is 22 mT. The flexible gripper with four fingers can pick up 10.51 g of objects at the magnetic field of 105 mT. In addition, this composite bionic soft gripper has excellent magnetron performance, and it can change surface like snakes and operate like human hands. This research may help develop soft devices for magnetic field control and try to provide new solutions for soft grasping.

Related Factors of Upper Limb Musculoskeletal Disease in Small-to-Medium-sized Manufacture Enterprises Workers (중소규모 제조업 근로자의 상지 근골격계질환 발생에 영향을 미치는 요인)

  • Kim, Hye-Jin;Jung, Hye-Sun
    • Korean Journal of Occupational Health Nursing
    • /
    • v.13 no.1
    • /
    • pp.19-29
    • /
    • 2004
  • Purpose: This study was conducted at small-to-medium-sized manufacture enterprises less than 300 employees. Method: For 167 workers in 12 small-to-medium-sized manufacture, we examined the self-recording questionnaires about general characteristics, health characteristics, occupational characteristics and subjective musculoskeletal symptoms designed by NIOSH. Result: Related factors of upper limb musculoskeletal symptoms were found in using of the PC except work, the speed control at working and inappropriate positions for neck, and that using of the PC except work, the degree of intensity at working and the speed control at working for shoulder, and that the degree of intensity at working, the speed control at working, inappropriate positions and excessive workforce for arm/elbow, and that the degree of intensity at working, the speed control at working, inappropriate positions, excessive strong and vibration for hand/wrist/fingers. Conclusion: As a result of multiple logistic regression analysis, musculoskeletal symptoms of neck were influenced by use of the PC except work, household work, and the speed control at working, symptoms of shoulder by using of the PC of except work and the degree of intensity at working, symptoms of arm/elbow by the speed control at working, and symptoms of hand/wrist/fingers by the degree of intensity at work and excessive workforce.

  • PDF

A Compliance Control Method for Robot Hands with Consideration of Decoupling among Fingers/Joints (손가락/관절 간의 기구학적 독립을 고려한 로봇 손의 컴플라이언스 제어 방법)

  • Kim, Byoung-Ho;Yi, Byung-Ju;Suh, Il-Hong;Oh, Sang-Rok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.7
    • /
    • pp.568-577
    • /
    • 2000
  • In this paper for an object grasped by a robot hand to work in stiffness control domain we first investigate the number of fingers for successful stiffness modulation in the object operational space. Next we propose a new compliance control method for robot hands which consist of two steps. RIFDS(Resolved Inter-Finger Decoupling Solver) is to decompose the desired compliance characteristic specified in the op-erational space into the compliance characteristic in the fingertip space without inter-finger coupling and RIJDS(Resolved Inter-Joint Decoupling Solver) is to decompose the fingertip space without inter-finger coupling and RIJDS(Resolved inter-Joint Decoupling Solver) is to decompose the compliance characteristic in the finger-tip space into the compliance characteristic given in the joint space without inter-joint coupling. Based on the analysis results the finger structure should be biominetic in the sense that either kniematic redundancy or force redundancy are required to implement the proposed compliance control scheme, Five-bar fingered robot hands are used as an illustrative example to implement the proposed compliance control method. To show the effectiveness of the proposed compliance control method simulations are performed for two-fingered and three-fingered robot hands.

  • PDF

A study of human grasping ability and its application to a robot hand

  • Kim, Ilhwan;Inooka, Hikaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1774-1778
    • /
    • 1991
  • In this paper, we discuss the smooth hand-over of an object from a man to a robot and vice versa. In order for a robot to grasp an object or release a grasped object stably without using object model, as a man does, one of the basic approaches is the physiological method motivated by the study of human hands. So, we analyze human's grasping behavior by measuring grasp and friction forces simultaneously as a man grasps a experimental device which is designed for grasping or hand-over. Also, we investigate two methods that can predict when and bow fingers will slip upon a grasped object. And then, we propose a method of the hand-over of an object between a man and a robot by applying human's capability to a robot hand control.

  • PDF

Development of a coupled tendom driven robot hand

  • Choi, H.R.;Lee, Y.T.;Kim, J.H.;Chung, W.K.;Youm, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.185-190
    • /
    • 1993
  • The POSTECH Hand adopting coupled tendon driven technique with planar two fingers is developed. The hand is designed to emulate principal motions of the human hand which has two and three joints respectively. Its kinematic parameters are determined through a parameter optimizing technique to aim at improving the isotropy of fingertip motions with new criterion functions of design. For the control of the hand, tension and torque control algorithms are developed. Based on the virtual stiffness concept, we develop the stiffness control method of a grasped object with redundant finger mechnism and investigate experimentally.

  • PDF

Development of a 16 DOF Anthropomorphic Robot Hand with Back-Drivability Joint for Stable Grasping (안정 파지를 위한 16자유도 역구동 관절을 가지는 인간형 로봇 손 개발)

  • Yang, Hyun-Dae;Park, Sung-Woo;Park, Jae-Han;Bae, Ji-Hun;Baeg, Moon-Hong
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.3
    • /
    • pp.220-229
    • /
    • 2011
  • This paper focuses on a development of an anthropomorphic robot hand. Human hand is able to dexterously grasp and manipulate various objects with not accurate and sufficient, but inaccurate and scarce information of target objects. In order to realize the ability of human hand, we develop a robot hand and introduce a control scheme for stable grasping by using only kinematic information. The developed anthropomorphic robot hand, KITECH Hand, has one thumb and three fingers. Each of them has 4 DOF and a soft hemispherical finger tip for flexible opposition and rolling on object surfaces. In addition to a thumb and finger, it has a palm module composed the non-slip pad to prevent slip phenomena between the object and palm. The introduced control scheme is a quitely simple based on the principle of virtual work, which consists of transposed Jacobian, joint angular position, and velocity obtained by joint angle measurements. During interaction between the robot hand and an object, the developed robot hand shows compliant grasping motions by the back-drivable characteristics of equipped actuator modules. To validate the feasibility of the developed robot hand and introduced control scheme, collective experiments are carried out with the developed robot hand, KITECH Hand.

Use of the Tenocutaneous Free Flap In Hand Reconstruction (유리 건 피판을 이용한 수부 재건술)

  • Chung, Duke-Whan;Han, Chung-Soo;Kim, Ki-Bong;Yi, Jin-Woong
    • Archives of Reconstructive Microsurgery
    • /
    • v.10 no.2
    • /
    • pp.93-98
    • /
    • 2001
  • Purpose : This describes our experience with a tenocutaneous free flap from the dorsum of the foot or radial forearm to reconstruct the dorsal skin and extensor tendons of the hand. Material and Methods : Between february 1987 and July 1998, we treated 9 patients with composite tissue loss on the dorsal hand caused by crushing injury. Nine men had an average age of 26.4 years(range, $19{\sim}47$). We treated 5 patients with the free dorsalis pedis flap including the extensor tendons and the superficial peroneal nerve and 4 patients with reverse forearm flap including the brachioradialis tendon and/or superficial radial nerve. Flap size was average 4.4(3,2cm. Evaluation of the results was based on the survived flap rate, the recovery rates for range of motion of the metacarpophalageal joints in the operated fingers. two-point discrimination. Results : All flaps were well vascularized and survived completely. Recovery rates for range of motion of the metacarpophalageal joints in operated fingers range from $78%{\sim}99%$(average, 90%). Two-point discrimination of the transferred flaps in 5 patients average $20{\pm}3.5mm$. Conclusion : The advantages of this procedure are mass action reconstruction with tendon, one-stage operation, faster healing with less adhesion formation, and early mobilization.

  • PDF