• Title/Summary/Keyword: Hand Contour

Search Result 93, Processing Time 0.021 seconds

HSV Color Model based Hand Contour Detector Robust to Noise (노이즈에 강인한 HSV 색상 모델 기반 손 윤곽 검출 시스템)

  • Chae, Soohwan;Jun, Kyungkoo
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.10
    • /
    • pp.1149-1156
    • /
    • 2015
  • This paper proposes the hand contour detector which is robust to noises. Existing methods reduce noises by applying morphology to extracted edges, detect finger tips by using the center of hands, or exploit the intersection of curves from hand area candidates based on J-value segmentation(JSEG). However, these approaches are so vulnerable to noises that are prone to detect non-hand parts. We propose the noise tolerant hand contour detection method in which non-skin area noises are removed by applying skin area detection, contour detection, and a threshold value. By using the implemented system, we observed that the system was successfully able to detect hand contours.

Hand Shape Classification using Contour Distribution (윤곽 분포를 이용한 이미지 기반의 손모양 인식 기술)

  • Lee, Changmin;Kim, DaeEun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.6
    • /
    • pp.593-598
    • /
    • 2014
  • Hand gesture recognition based on vision is a challenging task in human-robot interaction. The sign language of finger spelling alphabets has been tested as a kind of hand gesture. In this paper, we test hand gesture recognition by detecting the contour shape and orientation of hand with visual image. The method has three stages, the first stage of finding hand component separated from the background image, the second stage of extracting the contour feature over the hand component and the last stage of comparing the feature with the reference features in the database. Here, finger spelling alphabets are used to verify the performance of our system and our method shows good performance to discriminate finger alphabets.

Mobile Robot Control using Hand Shape Recognition (손 모양 인식을 이용한 모바일 로봇제어)

  • Kim, Young-Rae;Kim, Eun-Yi;Chang, Jae-Sik;Park, Se-Hyun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.4
    • /
    • pp.34-40
    • /
    • 2008
  • This paper presents a vision based walking robot control system using hand shape recognition. To recognize hand shapes, the accurate hand boundary needs to be tracked in image obtained from moving camera. For this, we use an active contour model-based tracking approach with mean shift which reduces dependency of the active contour model to location of initial curve. The proposed system is composed of four modules: a hand detector, a hand tracker, a hand shape recognizer and a robot controller. The hand detector detects a skin color region, which has a specific shape, as hand in an image. Then, the hand tracking is performed using an active contour model with mean shift. Thereafter the hand shape recognition is performed using Hue moments. To assess the validity of the proposed system we tested the proposed system to a walking robot, RCB-1. The experimental results show the effectiveness of the proposed system.

Fast Hand-Gesture Recognition Algorithm For Embedded System (임베디드 시스템을 위한 고속의 손동작 인식 알고리즘)

  • Hwang, Dong-Hyun;Jang, Kyung-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1349-1354
    • /
    • 2017
  • In this paper, we propose a fast hand-gesture recognition algorithm for embedded system. Existing hand-gesture recognition algorithm has a difficulty to use in a low performance system such as embedded systems and mobile devices because of high computational complexity of contour tracing method that extracts all points of hand contour. Instead of using algorithms based on contour tracing, the proposed algorithm uses concentric-circle tracing method to estimate the abstracted contour of fingers, then classify hand-gestures by extracting features. The proposed algorithm has an average recognition rate of 95% and an average execution time of 1.29ms, which shows a maximum performance improvement of 44% compared with algorithm using the existing contour tracing method. It is confirmed that the algorithm can be used in a low performance system such as embedded systems and mobile devices.

A Memory-efficient Hand Segmentation Architecture for Hand Gesture Recognition in Low-power Mobile Devices

  • Choi, Sungpill;Park, Seongwook;Yoo, Hoi-Jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.3
    • /
    • pp.473-482
    • /
    • 2017
  • Hand gesture recognition is regarded as new Human Computer Interaction (HCI) technologies for the next generation of mobile devices. Previous hand gesture implementation requires a large memory and computation power for hand segmentation, which fails to give real-time interaction with mobile devices to users. Therefore, in this paper, we presents a low latency and memory-efficient hand segmentation architecture for natural hand gesture recognition. To obtain both high memory-efficiency and low latency, we propose a streaming hand contour tracing unit and a fast contour filling unit. As a result, it achieves 7.14 ms latency with only 34.8 KB on-chip memory, which are 1.65 times less latency and 1.68 times less on-chip memory, respectively, compare to the best-in-class.

Hand Gesture Recognition Using Shape Similarity Based On Feature Points Of Contour (윤곽선 특징점 기반 형태 유사도를 이용한 손동작 인식)

  • Yi, Hong-Ryoul;Choi, Chang;Kim, Pan-Koo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.585-588
    • /
    • 2008
  • This paper proposes hand gesture recognition using shape similarity method. For this, we require two steps which are aquisition of Hand area and similarity evaluation. First step is extracting hand area using YCbCr color spare. Then eliminate noise through filter and analyzing histogram. For doing this, we ran measure similarity of hand gesture by applying TSR after getting contour. Finally, we utilize shape similarity for recognizing of hand gesture.

  • PDF

Real-Time Recognition Method of Counting Fingers for Natural User Interface

  • Lee, Doyeob;Shin, Dongkyoo;Shin, Dongil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2363-2374
    • /
    • 2016
  • Communication occurs through verbal elements, which usually involve language, as well as non-verbal elements such as facial expressions, eye contact, and gestures. In particular, among these non-verbal elements, gestures are symbolic representations of physical, vocal, and emotional behaviors. This means that gestures can be signals toward a target or expressions of internal psychological processes, rather than simply movements of the body or hands. Moreover, gestures with such properties have been the focus of much research for a new interface in the NUI/NUX field. In this paper, we propose a method for recognizing the number of fingers and detecting the hand region based on the depth information and geometric features of the hand for application to an NUI/NUX. The hand region is detected by using depth information provided by the Kinect system, and the number of fingers is identified by comparing the distance between the contour and the center of the hand region. The contour is detected using the Suzuki85 algorithm, and the number of fingers is calculated by detecting the finger tips in a location at the maximum distance to compare the distances between three consecutive dots in the contour and the center point of the hand. The average recognition rate for the number of fingers is 98.6%, and the execution time is 0.065 ms for the algorithm used in the proposed method. Although this method is fast and its complexity is low, it shows a higher recognition rate and faster recognition speed than other methods. As an application example of the proposed method, this paper explains a Secret Door that recognizes a password by recognizing the number of fingers held up by a user.

Object Contour Extraction Algorithm Combined Snake with Level Set (스네이크와 레벨 셋 방법을 결합한 개체 윤곽 추출 알고리즘)

  • Hwang, JaeYong;Wu, Yingjun;Jang, JongWhan
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.5
    • /
    • pp.195-200
    • /
    • 2014
  • Typical methods of active contour model for object contour extraction are snake and level. Snake is usually faster than level set, but has limitation to compute topology of objects. Level set on the other hand is slower but good at it. In this paper, a new object contour extraction algorithm to use advantage of each is proposed. The algorithm is composed of two main steps. In the first step, snake is used to extract the rough contour and then in the second step, level set is applied to extract the complex contour exactly. 5 binary images and 2 natural images with different contours are simulated by a proposed algorithm. It is shown that speed is reduced and contour is better extracted.

Accelerating Distance Transform Image based Hand Detection using CPU-GPU Heterogeneous Computing

  • Yi, Zhaohua;Hu, Xiaoqi;Kim, Eung Kyeu;Kim, Kyung Ki;Jang, Byunghyun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.557-563
    • /
    • 2016
  • Most of the existing hand detection methods rely on the contour shape of hand after skin color segmentation. Such contour shape based computations, however, are not only susceptible to noise and other skin color segments but also inherently sequential and difficult to efficiently parallelize. In this paper, we implement and accelerate our in-house distance image based approach using CPU-GPU heterogeneous computing. Using emerging CPU-GPU heterogeneous computing technology, we achieved 5.0 times speed-up for $320{\times}240$ images, and 17.5 times for $640{\times}480$ images and our experiment demonstrates that our proposed distance image based hand detection is robust and fast, reaching up to 97.32% palm detection rate, 80.4% of which have more than 3 fingers detected on commodity processors.

Fascial Free Flap for Reconstruction of the Dorsolateral Hand and Digits: The Advantage of a Thin Contour

  • Lee, Min Gue;Kim, Jin Soo;Lee, Dong Chul;Roh, Si Young;Lee, Kyung Jin;Choi, Byeong Kyoo
    • Archives of Plastic Surgery
    • /
    • v.43 no.6
    • /
    • pp.551-558
    • /
    • 2016
  • Background Fascial free flaps have been widely used for reconstruction of the hand because they are thin. However, studies reporting objective data regarding the advantages of this approach are lacking. Thus, we report our experience with such flaps. Methods Forty-five cases of fascial free flaps between November 2006 and March 2014 were reviewed. Nine cases involving reconstructed dorsal or lateral defects were included. Four anterolateral thigh fascial free flaps and 5 lateral arm fascial free flaps were examined. Maximal flap contour was assessed by measuring reconstructed tissue thickness at the central area from the surface of the skin to below the bone in a vertical manner using ultrasonography and X-ray data. Contralateral regions were examined in the same manner and a comparative analysis was performed. A questionnaire survey regarding aesthetic satisfaction was also administered. Results All reconstructed parts had a thicker contour than the contralateral side. The average relative percentage of reconstructed tissue thickness was found to be 152% using ultrasonography and 143% using X-ray imaging. According to the aesthetic satisfaction survey, the average rate of satisfaction for patients was 62%, and satisfaction with the flap contour was 72%. Conclusions Using a fascial free flap, the reconstructed tissue was approximately $1.5{\times}$ as thick as the contour of the normal side, which led to positive responses regarding aesthetic satisfaction.