This paper proposes the hand contour detector which is robust to noises. Existing methods reduce noises by applying morphology to extracted edges, detect finger tips by using the center of hands, or exploit the intersection of curves from hand area candidates based on J-value segmentation(JSEG). However, these approaches are so vulnerable to noises that are prone to detect non-hand parts. We propose the noise tolerant hand contour detection method in which non-skin area noises are removed by applying skin area detection, contour detection, and a threshold value. By using the implemented system, we observed that the system was successfully able to detect hand contours.
Hand gesture recognition based on vision is a challenging task in human-robot interaction. The sign language of finger spelling alphabets has been tested as a kind of hand gesture. In this paper, we test hand gesture recognition by detecting the contour shape and orientation of hand with visual image. The method has three stages, the first stage of finding hand component separated from the background image, the second stage of extracting the contour feature over the hand component and the last stage of comparing the feature with the reference features in the database. Here, finger spelling alphabets are used to verify the performance of our system and our method shows good performance to discriminate finger alphabets.
본 논문에서는 손 모양 인식을 이용한 비전기반의 모바일 로봇제어 시스템을 제안한다. 손 모양을 인식하기 위해서는 움직이는 카메라로부터 정확한 손의 경계선을 추출하고 추적하는 것이 필요하다. 이를 위해 본 논문에서는 초기 윤곽선 위치 및 경계에 강건하고, 빠른 물체를 정확히 추적할 수 있는 mean shift를 이용한 활성 윤곽선 모델(ACM) 추적 방법을 개발하였다. 제안된 시스템은 손 검출기, 손 추적기, 손 모양 인식기, 로봇 제어기 4가지 모듈로 구성된다. 손 검출기는 영상에서 피부색 영역으로 정확한 모양을 손으로 추출한 이후 활성 윤곽선 모델(ACM) 과 mean shift를 사용하여 손 영역을 정확히 추적한다. 마지막으로 Hue 모멘트에 이용하여 손의 형태를 인식한다. 제안된 시스템의 적합성을 평가하기 위하여 2족 보행로봇 RCB-1에서 실험이 수행되었다. 실험 결과는 제안된 시스템의 효율성을 증명하였다.
본 논문에서는 임베디드 시스템에 활용할 수 있는 고속의 손동작 인식 알고리즘을 제안한다. 기존의 손동작 인식 알고리즘은 손의 윤곽선을 구성하는 모든 점을 추출하는 윤곽선 추적 과정의 계산복잡도가 높기 때문에 임베디드 시스템, 모바일 디바이스와 같은 저성능의 시스템에서의 활용에 어려움이 있었다. 제안하는 알고리즘은 윤곽선 추적 알고리즘을 사용하는 대신 동심원 추적을 응용하여 추상화된 손가락의 윤곽선을 추정한 다음 특징을 추출하여 손동작을 분류한다. 제안된 알고리즘은 평균 인식률은 95%이고 평균 수행시간은 1.29ms로서 기존의 윤곽선 추적 방식을 사용하는 알고리즘에 비해 최대 44%의 성능향상을 보였고 임베디드 시스템, 모바일 디바이스와 같은 저성능의 시스템에서의 활용가능성을 확인하였다.
JSTS:Journal of Semiconductor Technology and Science
/
제17권3호
/
pp.473-482
/
2017
Hand gesture recognition is regarded as new Human Computer Interaction (HCI) technologies for the next generation of mobile devices. Previous hand gesture implementation requires a large memory and computation power for hand segmentation, which fails to give real-time interaction with mobile devices to users. Therefore, in this paper, we presents a low latency and memory-efficient hand segmentation architecture for natural hand gesture recognition. To obtain both high memory-efficiency and low latency, we propose a streaming hand contour tracing unit and a fast contour filling unit. As a result, it achieves 7.14 ms latency with only 34.8 KB on-chip memory, which are 1.65 times less latency and 1.68 times less on-chip memory, respectively, compare to the best-in-class.
본 논문은 손동작 인식을 위한 형태 유사도 측정 방법을 제안한다. 이를 위해 손 영역 획득과 유사도 측정 단계로 나눈다. 손 영역 획득은 YCbCr 칼라 공간을 이용하여 손 영역을 추출하며, filter와 Histogram분석을 통하여 노이즈를 제거한다. 그리고 손 형태 유사도 측정은 윤곽선을 추출한 후 인접 간선들 사이의 거리와 각도 관계로 TSR을 적용하여 손동작의 유사성을 측정하였다. 파악된 특징점으로부터 형태 유사도 값을 측정한 후, 이를 손동작을 인식하는데 활용한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권5호
/
pp.2363-2374
/
2016
Communication occurs through verbal elements, which usually involve language, as well as non-verbal elements such as facial expressions, eye contact, and gestures. In particular, among these non-verbal elements, gestures are symbolic representations of physical, vocal, and emotional behaviors. This means that gestures can be signals toward a target or expressions of internal psychological processes, rather than simply movements of the body or hands. Moreover, gestures with such properties have been the focus of much research for a new interface in the NUI/NUX field. In this paper, we propose a method for recognizing the number of fingers and detecting the hand region based on the depth information and geometric features of the hand for application to an NUI/NUX. The hand region is detected by using depth information provided by the Kinect system, and the number of fingers is identified by comparing the distance between the contour and the center of the hand region. The contour is detected using the Suzuki85 algorithm, and the number of fingers is calculated by detecting the finger tips in a location at the maximum distance to compare the distances between three consecutive dots in the contour and the center point of the hand. The average recognition rate for the number of fingers is 98.6%, and the execution time is 0.065 ms for the algorithm used in the proposed method. Although this method is fast and its complexity is low, it shows a higher recognition rate and faster recognition speed than other methods. As an application example of the proposed method, this paper explains a Secret Door that recognizes a password by recognizing the number of fingers held up by a user.
능동 개체 윤곽 추출의 대표적인 방법은 스네이크(Snake)와 레벨 셋(Level Set) 기술이다. 일반적으로 스네이크는 속도는 빠르나 개체 위상을 처리하는 데 제약이 있다. 그러나 레벨 셋은 속도는 느리지만 개체 위상에 관계없이 잘 처리할 수 있는 장점이 있다. 본 논문에서는 빠르고 복잡한 위상을 처리하기 위해 두 방법의 장점을 이용한 알고리즘을 제안한다. 알고리즘은 2단계로 구성된다. 첫 번째 단계는 스네이크를 사용하여 빠르게 개체의 대략적인 윤곽을 추출한 후 레벨 셋을 두 번째 적용하여 복잡한 개체 윤곽을 정확하게 추출한다. 제안한 알고리즘은 다양한 위상을 갖는 5개의 이진영상 및 2개의 자연영상에 적용하여 속도 및 윤곽 추출이 개선된 것을 보여 준다.
JSTS:Journal of Semiconductor Technology and Science
/
제16권5호
/
pp.557-563
/
2016
Most of the existing hand detection methods rely on the contour shape of hand after skin color segmentation. Such contour shape based computations, however, are not only susceptible to noise and other skin color segments but also inherently sequential and difficult to efficiently parallelize. In this paper, we implement and accelerate our in-house distance image based approach using CPU-GPU heterogeneous computing. Using emerging CPU-GPU heterogeneous computing technology, we achieved 5.0 times speed-up for $320{\times}240$ images, and 17.5 times for $640{\times}480$ images and our experiment demonstrates that our proposed distance image based hand detection is robust and fast, reaching up to 97.32% palm detection rate, 80.4% of which have more than 3 fingers detected on commodity processors.
Lee, Min Gue;Kim, Jin Soo;Lee, Dong Chul;Roh, Si Young;Lee, Kyung Jin;Choi, Byeong Kyoo
Archives of Plastic Surgery
/
제43권6호
/
pp.551-558
/
2016
Background Fascial free flaps have been widely used for reconstruction of the hand because they are thin. However, studies reporting objective data regarding the advantages of this approach are lacking. Thus, we report our experience with such flaps. Methods Forty-five cases of fascial free flaps between November 2006 and March 2014 were reviewed. Nine cases involving reconstructed dorsal or lateral defects were included. Four anterolateral thigh fascial free flaps and 5 lateral arm fascial free flaps were examined. Maximal flap contour was assessed by measuring reconstructed tissue thickness at the central area from the surface of the skin to below the bone in a vertical manner using ultrasonography and X-ray data. Contralateral regions were examined in the same manner and a comparative analysis was performed. A questionnaire survey regarding aesthetic satisfaction was also administered. Results All reconstructed parts had a thicker contour than the contralateral side. The average relative percentage of reconstructed tissue thickness was found to be 152% using ultrasonography and 143% using X-ray imaging. According to the aesthetic satisfaction survey, the average rate of satisfaction for patients was 62%, and satisfaction with the flap contour was 72%. Conclusions Using a fascial free flap, the reconstructed tissue was approximately $1.5{\times}$ as thick as the contour of the normal side, which led to positive responses regarding aesthetic satisfaction.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.