• Title/Summary/Keyword: Han river watershed

Search Result 315, Processing Time 0.02 seconds

Evaluation on Pollution Load Characteristics and Influence of Tributaries in the Hwangguji Stream (황구지천 유역의 오염부하 특성 및 지류 영향 평가)

  • Lim, Su-Jin;Lim, Byung-Ran;Lee, Han-Saem;Kang, Joo-Hyoung;Ahn, Tae-Ung;Shin, Hyun-Sang
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.4
    • /
    • pp.249-262
    • /
    • 2021
  • This study investigated the pollution characteristics of the main pollution zone in the Hwangguji watershed and the influence of the tributary on the main stream. The characteristics of the main pollution zone, including, the water quality index (WQI), stream rating, load duration curve (LDC), delivery load density (DLD), and contribution of the tributary to the mainstream, were evaluated by time-series visual heatmap. The WQI of the mainstream of Hwangguji was lowered to the poor (IV) level from the inflow point of Suwon stream (SW) and the LDC excess rate in the T-P was higher than that of BOD5, especially for the wet season, suggesting that management of non-point source with T-P is preferred. The contribution (%) of the tributaries in the upstream section of Hwangguji watershed were BOD5 14.54%, TOC 15.67%, T-N 5.43%, and T-P 6.97%. In particular, the Suwon sewage treatment plant located in the mainstream showed a high contribution of BOD5 (64.40%) and T-P (53.54%), respectively, due to the high discharge rate (6.019 m3/sec). Meanwhile, Sammi and Gal stream have a large impact on the mainstream with high DLD and poor WQI. Thus, both streams were considered as pollution hot spots. These results provide useful basic data for preparing more effective water quality improvement and management plans in the watershed.

Relationship between Stream Geomophological Factors and the Vegetation Abundance - With a Special Reference to the Han River System - (하천의 지형학적 인자와 식생종수의 관계 -한강수계를 중심으로-)

  • 이광우;김태균;심우경
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.3
    • /
    • pp.73-85
    • /
    • 2002
  • The purpose of this study was to develop prediction models for plant species abundance by stream restoration. Generally the stream plant is affected by stream gemophology. So in this study, the relationship between the vegetation abundance and stream gemophology was developed by multiple regression analysis. The stream characteristics utilized in this study were longitudinal slope, transectional slope, micro-landforms through the longitudinal direction, riparian width and geometric mean diameter and biggest diameter of bed material, and cumulated coarse and fine sand weight portion. The Pyungchang River with mountainous watershed and the Kyungan stream and the Bokha stream in the agricultural region were selected and vegetation species abundance and stream characteristics were documented from the site at 2~3km intervals from the upper stream to the lower. The Models for predicting the vegetation abundance were developed by multiple regression analysis using SPSS statistics package. The linear relationship between the dependant(species abundance) and independant(stream characteristics) variables was tested by a graphical method. Longitudinal and transectional slope had a nonlinear relationship with species abundance. In the next step, the independance between the independant variables was tested and the correlation between independant and dependant variables was tested by the Pearson bivariate correlation test. The selected independant variables were transectional slope, riparian width, and cumulated fine sand weight portion. From the multiple regression analysis, the $R^2$for the Pyungchang river, Kyungan stream, Bokga stream were 0.651, 0.512 and 0.240 respectively. The natural stream configuration in the Pyungchang river had the best result and the lower $R^2$for Kyunan and Bokha stream were due to human impact which disturbed the natural ecosystem. The lowest $R^2$for the Bokha stream was due to the shifting sandy bed. If the stream bed is fugitive, the prediction model may not be valid. Using the multiple regression models, the vegetation abundance could be predicted with stream characteristics such as, transection slope, riaparian width, cumulated fine sand weigth portion, after stream restoration.

Characteristics of Nitrogen and Carbon Isotopes on Organic Matter and River Sediments of Toil Stream in Yeongju Dam Basin (영주댐 유역 토일천 유입 유기물 및 하천 퇴적물에 대한 질소와 탄소 동위원소 특성 연구)

  • Kang, Han;Song, Hye Won;Kim, Young Hun;Kim, Jeong Jin
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.439-445
    • /
    • 2022
  • Organic pollutants that contained in stream sediments have origins of mountain soil in natural and cattle manure in human activity. Nitrogen and carbon isotope analysis for mountain soil, cattle manure and stream sediment were performed for contribution evaluation of organic pollutants in Toil stream of Yeongju dam basin. Average carbon isotope ratio(δ13C) is -25.17‰, -22.34‰, and -26.39‰ for river sediments, cattle manure and mountain soil, respectively. Result of carbon isotope analysis suggests that river sediments are more affected by acid soils. Average value of the nitrogen isotope ratio (δ15N) is 9.46% for river sediment, 1.99% for mountain soil, and 19.53% for cattle manure. Result of nitrogen isotopic analysis show that contribution of cattle mature is slightly higher than that of mountain soil in Toil stream sediments.

Quantifying nitrogen source contribution ratios using stable isotope method: Application of Bayesian mixing model (안정동위원소를 이용한 하천에서의 질소오염원 기여율 정량화: Bayesian 혼합모델의 적용)

  • Nam, Tae-Hui;Ryu, Hui-Seoung;Kang, Tae-Woo;Han, Yeong-un;Kim, Jihyun;Lee, Kyounghee;Hwang, Soonhong;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.510-519
    • /
    • 2019
  • The 'Stable Isotope Analysis in R' (SIAR), one of the Bayesian mixing models for stable isotopes, has been proven to be useful for source apportionment of nitrates in rivers. In this study, the contribution ratios of nitrate sources were quantified by using the SIAR based on nitrogen and oxygen stable isotope measurements in the Yeongsan River. From the measurements, it was found that the values of δ15N-NO3 and δ18O-NO3 ranged from -8.2 ‰ to +13.4 ‰ and from +2.2 ‰ to +9.8 ‰, respectively. We further analyzed the contribution ratios of the five nitrate sources by using the SIAR. From the modeling results, the main nitrate source was found to be soil N (29.3 %), followed by sewage (26.7 %), manure (19.6 %), chemical fertilizer (17.9 %) and precipitation (6.3 %). From the results, it was found that the anthropogenic sources, i.e., sewage, manure and chemical fertilizer contribute 64.2% of the total nitrate inflow from the watershed. Due to the significant correlation of δ15N-NO3 and lnNO3- in this study, the fractionation factors reflecting the biogeochemical processes of stable isotope ratios could be directly obtained. This may make the contribution ratios obtained in this study more precise. The fractionation factors were identified as +3.64 ± 0.91 ‰ for δ15N-NO3 (p<0.01) and -5.67 ± 1.73 ‰ for δ18O-NO3(p<0.01), respectively, and were applied in using the SIAR. The study showed that the stable isotope method using the SIAR could be applied to quantitatively calculate the contribution ratios of nitrate sources in the Yeongsan River.

Stream Health Assessments on Tributaries of Lake Paldang Using Index of Biological Integrity for Fish Community and Physical Habitat Parameters (어류 모델 메트릭과 물리적 서식지 변수를 이용한 팔당호 유입하천 하류부의 하천건강성 평가)

  • Choi, Myung-Jae;Park, Hae-Kyung;Lee, Jang-Ho;Yun, Seok-Hwan
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.3
    • /
    • pp.280-289
    • /
    • 2009
  • The fish communities and physical habitat conditions of fifteen tributaries of Lake Paldang in spring and autumn, 2008 were surveyed to evaluate the ecological health of the streams. The total 2,746 individuals were collected belonging to 11 families 31 genera 40 species. Two new species (Cottus koreanus, Gnathopogon strigaus) that have never been reported as yet in Lake Paldang watershed were found for the first time. The most dominant species in the tributaries was Acheilognathus yamatsutae (19.9%) which is Korean endemic species. Ecological health evaluation of fifteen tributaries using index of biological integrity (IBI) model for fish community and qualitative habitat evaluation index (QHEI) was performed. According th the IBI analysis, four streams (Siwoo-Stream, Jojong-Stream, Moonho-Stream and Mugab-Stream) were evaluated as "good" condition (B grade), Woosan-Stream were "poor" condition (D grade) and others were "fair" condition (C grade). Qualitative habitat evaluation index values of the four streams were the grade "II" indicating "good" condition and those of eleven streams were the grade "III", indicating 'fair' condition. On the whole, dataset of IBI and QHEI showed that ecological health of Jojong-Stream has been well maintained compared to other tributaries of Lake Paldang.

Estimation of Pollution Contribution TMDL Unit Watershed in Han-River according to hydrological characteristic using Flow Duration Curve (유량지속곡선을 이용한 수문특성별 한강수계 총량관리 단위유역의 오염기여도 추정)

  • Kim, Dong Young;Yoon, Chun Gyeong;Rhee, Han Pil;Choi, Jae Ho;Hwang, Ha Sun
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.497-509
    • /
    • 2019
  • After the Total Maximum Daily Loads(TMDLs) was applied, it became beyond the limit of concentration management. However, it does not adequately reflect the characteristics of various watersheds, and causes problems with local governments because of the standard flow set. Thus, in this study, the Han River system is organized into four groups in estimating the Pollution Contribution by applying the Flow Duration Curve(FDC) created by the daily flow of data from the HSPF. And the method of this study is expected to be valuable as basic data for the TMDLs. As a result, Group I contains the main watersheds with no large hydraulic structures and tributary watersheds. There is no specificity in the FDC and the Pollution Contribution is estimated as rainfall runoff. Group II contains watersheds near the city where the FDC is maintained above a certain level during the Low Flow Conditions and the Pollution Contribution is estimated as the discharge flow of large scale point pollution facilities. Group III contains the main watersheds in which the large hydraulic structures are installed and FDC is curved in the Low Flow Conditions. So the Pollution Contribution is estimated as the water quality of the large hydraulic structures. Group IV contains the upstream in mainstream watersheds in which the large hydraulic structures are installed and the FDC is disabled before the Low Flow Conditions. As the flow is concentrated in the High Flow Conditions, the non-point pollution sources are estimated as the Pollution Contribution.

The Distribution of DOM and POM and the Composition of Stable Carbon Isotopes in Streams of Agricultural and Forest Watershed Located in the Han River System (한강수계 농경지역 하천과 삼림지역 하천에서 DOM과 POM의 분포 및 안정탄소동위원소 조성비)

  • Kim, Jai-Ku;Kim, Bom-Chul;Jung, Sung-Min;Jang, Chang-Won;Shin, Myoung-Sun;Lee, Yun-Kyoung
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.93-102
    • /
    • 2007
  • The runoff characteristics of organic matter in turbid water were investigated in eleven tributary streams of the Han River system, Korea. The flow-weighted event mean concentrations of organic matter ranged from 1.5 to 3.2 mg $L^{-1}$ of DOM and 2.2 of 29.1 mg $L^{-1}$ of POM, respectively. The SUVA value which reflects the proportion of humic substance in organic matters was higher during the rainfall season, meaning that the runoff of refractory form increase in this period. Stable carbon isotope ratios of both POM and DOM were different among streams, which reflect the sources of organic matter. DOM isotope ratios were less depleted of $^{13}C$ than that of POM by approximately 1 to $2%_{\circ}$ ${\delta}^{13}C$ of the several turbid streams (the Mandae Stream, the Jawoon Stream, and the Daegi stream) were heavier than those of clear streams. ${\delta}^{13}C$ values in the turbid upstream tributaries were similar to those of downstream reaches (such as the Soyang River, the Sum River, and the Seo River). From the ${\delta}^{13}C$ analysis of POM it could be calculated that $C_4$ pathway contributed approximately 15.9 to 23.6% of organic matter in several turbid upstream sites, and over 20% in the three sites of large downstream reaches. On the contrary it contributed only 9.1 to 12.8% in clear streams of forest watersheds. In the Soyang River, $C_4$ pathway organic matter contributed 8.8% of the DOM pool.

Spatial analysis of water shortage areas in South Korea considering spatial clustering characteristics (공간군집특성을 고려한 우리나라 물부족 핫스팟 지역 분석)

  • Lee, Dong Jin;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.2
    • /
    • pp.87-97
    • /
    • 2024
  • This study analyzed the water shortage hotspot areas in South Korea using spatial clustering analysis for water shortage estimates in 2030 of the Master Plans for National Water Management. To identify the water shortage cluster areas, we used water shortage data from the past maximum drought (about 50-year return period) and performed spatial clustering analysis using Local Moran's I and Getis-Ord Gi*. The areas subject to spatial clusters of water shortage were selected using the cluster map, and the spatial characteristics of water shortage areas were verified based on the p-value and the Moran scatter plot. The results indicated that one cluster (lower Imjin River (#1023) and neighbor) in the Han River basin and two clusters (Daejeongcheon (#2403) and neighbor, Gahwacheon (#2501) and neighbor) in the Nakdong River basin were found to be the hotspot for water shortage, whereas one cluster (lower Namhan River (#1007) and neighbor) in the Han River Basin and one cluster (Byeongseongcheon (#2006) and neighbor) in the Nakdong River basin were found to be the HL area, which means the specific area have high water shortage and neighbor have low water shortage. When analyzing spatial clustering by standard watershed unit, the entire spatial clustering area satisfied 100% of the statistical criteria leading to statistically significant results. The overall results indicated that spatial clustering analysis performed using standard watersheds can resolve the variable spatial unit problem to some extent, which results in the relatively increased accuracy of spatial analysis.

Analysis of Water bady Damage at Osu Stream Using the Flow-Loading Equation and 8-Day Intervals Cumulative Flow Duration Curve (유량-부하량 관계식과 8일 간격 누적유량지속곡선을 이용한 오수천의 수체 손상도 분석)

  • Lee, Young Sung;Kim, Young Suk;Han, Sung Wook;Seo, kwon ok;Lim, chang bok;Lee, Yeong Jae;Kim, Kyunghyun;Jung, Kang-Young
    • Journal of Environmental Science International
    • /
    • v.27 no.12
    • /
    • pp.1179-1193
    • /
    • 2018
  • The purpose of this study at water quality pollutants to propose proper management method for the Osu-A unit watershed which is the influent tributary located upstream of the Sumjin -river among the 13 unit watersheds in the Sumjin-river water system. Analyzed the correlation between flow-pollution loading and the correlation between land use type, BOD and TP items, and analyzed 8-day intervals Cumulative Flow Duration Curve (CFDC) and Load Duration Curve (LDC) to evaluate water quality damage. As a result, both BOD and TP were larger than 1 and the concentration of water pollutants increased with increasing flow. BOD was positively correlated with Urban and Field, and TP was positively correlated with Field with 0.710. As a result of the LDC, BOD was analyzed that the target water quality was achieved with the excess rate of less than 50%, and TP exceeded the target water quality by 50.1%. BOD usually exceeded the standard value (exceedance probability 50%) at low flow zone and On the other hand, TP usually exceeded the standard value at high flow zone. Monthly BOD (April to June) and TP (May to August) exceeded the standard. Sewage Wastewater treatment and non-point pollution control is Osu-A unit watersheds are effective in improving BOD and TP.

Discussion for the Effectiveness of Radar Data through Distributed Storm Runoff Modeling (분포형 홍수유출 모델링을 통한 레이더 강우자료의 효과분석)

  • Ahn, So Ra;Jang, Cheol Hee;Kim, Sang Ho;Han, Myoung Sun;Kim, Jin Hoon;Kim, Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.19-30
    • /
    • 2013
  • This study is to evaluate the use of dual-polarization radar data for storm runoff modeling in Namgang dam (2,293 $km^2$) watershed using KIMSTORM (Grid-based KIneMatic wave STOrm Runoff Model). The Bisl dual-polarization radar data for 3 typhoons (Khanun, Bolaven, Sanba) and 1 heavy rain event in 2012 were obtained from Han River Flood Control Office. Even the radar data were overall less than the ground data in areal average, the spatio-temporal pattern between the two data was good showing the coefficient of determination ($R^2$) and bias with 0.97 and 0.84 respectively. For the case of heavy rain, the radar data caught the rain passing through the ground stations. The KIMSTORM was set to $500{\times}500$ m resolution and a total of 21,372 cells (156 rows${\times}$137 columns) for the watershed. Using 28 ground rainfall data, the model was calibrated using discharge data at 5 stations with $R^2$, Nash and Sutcliffe Model Efficiency (ME) and Volume Conservation Index (VCI) with 0.85, 0.78 and 1.09 respectively. The calibration results by radar rainfall showed $R^2$, ME and VCI were 0.85, 0.79, and 1.04 respectively. The VCI by radar data was enhanced by 5 %.