• Title/Summary/Keyword: Han and Nakdong river

Search Result 300, Processing Time 0.03 seconds

Reservoir Operating System Using Sampling Stochastic Dynamic Programming for the Han River Basin (표본 추계학적 동적계획법을 사용한 한강수계 저수지 운영시스템 개발)

  • Eum, Hyung-Il;Park, Myung-Ky
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.1
    • /
    • pp.67-79
    • /
    • 2010
  • Korea water resources corporation (K-Water) has developed the real-time water resources management system for the Nakdong and the Geum River basin to efficiently operate multi-purpose dams in the basins. This study has extended to the Han River basin for providing an effective ending target storage of a month to the real-time water resources management system using Sampling Stochastic Dynamic Programming (SSDP), consequently increasing the efficiency of the reservoir system. The optimization model were developed for three reservoirs, named Soyang, Chungju, and Hwacheon, with high priority in terms of the amounts of effective capacity and water supply for the basin. The number of storage state variable for each dam to set an optimization problem has been assigned from the results of sensitivity analysis. Compared with the K-water operating policy with the target water supply elevations, the optimization model suggested in this study showed that the shortfalls are decreased by 37.22 MCM/year for the required water demands in the basin, even increasing 171 GWh in hydro electronic power generation. In addition, the result of a reservoir operating system during the drawdown period applied to real situation demonstrates that additional releases for water quality or hydro electronic power generation would be possible during the drawdown period between 2007 and 2008. On the basis of these simulation results, the applicability of the SSDP model and the reservoir operating system is proved. Therefore, the more efficient reservoir operation can be achieved if the reservoir operating system is extended further to other Korean basins.

Cryptosporidium and Giardia (oo)cysts in Korean Rivers and the Effect of Sample Matrix (국내 주요 수계 내 원생동물의 분석과 매질의 영향)

  • Chung, Hyenmi;Oh, Dukwha
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.271-276
    • /
    • 2006
  • The outbreak cases of Cryptosporidium or Giardia from drinking water in abroad have drawn attentions on the public health. It is well known that Cryptosporidium is the most resistant organism against chlorine disinfection. To guesstimate the levels of Cryptosporidium and Giardia in Korean surface water, 1~2 samples from 22 drinking water sources in four Korean major rivers of Han, Keum, Nakdong, and Youngsan were monitored. In addition, two sites in Kyunganchon, a contaminated river were monitored for comparison. In source waters, detection rates of Cryptosporidium and Giardia were 15% (6/39) and 21% (5/24) with the range of 1~3 oocysts/10 L and 1~6 cysts/10 L, respectively. In Kyunganchon, they were 60% (6/10) and 70% (7/10) in the range of 1~9 oocysts/10 L and 10~72 cysts/10 L, respectively. When one of the source waters in Han river was monitored monthly, Cryptosporidium were found mostly in cold season. Matrix of the samples gave influence on the recoveries of the spiked protozoa. The recoveries of both Cryptosporidium and Giardia increased in the samples of Kyunganchon, known as contaminated area. However, protozoan recovery did not show significant relation with turbidity, the index of matrix contamination, which implies that there are additional unveiled features of matrix affecting the recoveries of the protozoa. The protozoan distribution in Kyunganchon showed significant relations with Cl. perfringens, anaerobic and spore forming indicator bacteria of fecal contamination by regression analysis, but not with turbidity, the general indicator of water quality.

Evaluation of Stream Water Quality to Select Target Indicators for the Management of Total Maximum Daily Loads (수질오염총량관리 대상물질 선정을 위한 하천수질 평가)

  • Park, Jun Dae;Park, Jae Hong;Oh, Seung Young;Lee, Jae Kwan
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.5
    • /
    • pp.630-640
    • /
    • 2013
  • It is one of the most critical steps identifying impaired waterbodies exactly in the selection of target water quality indicators for the management of Total Maximum Daily Loads (TMDLs). Excess ratio and excess level were applied and analyzed by the stream zone basis in order to evaluate water impairment for Nakdong, Geum, Youngsan and Seomjin rivers. Each river basin was divided into stream zones in the light of its watershed and waterbody characteristics. Selected water quality parameters discussed in this study were pH, DO, BOD, COD, SS, T-P, T-Coli and F-Coli. The excess ratios of the water quality parameters were used to discriminate water bodies that did not meet water quality standards. The excess levels were used to classify the degradation of water quality. The excess ratios and the excess levels to the water quality criteria of the medium influence areas were used for each stream zone. The results indicate that the excess ratios and the excess levels are varied on the stream zone in each river basin. Three parameters, pH, DO and SS, met water quality standards in all stream zones. The other five parameters indicated very high excess ratios in most waterbodies, and especially T-P and T-Coli revealed to be very high excess levels in some waterbodies. These parameters could be considered as major target indicators for the management of TMDLs.

Optimal distance exponent of inverse distance method (역거리법의 최적 거리 지수)

  • Yoo, Ju-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.5
    • /
    • pp.451-459
    • /
    • 2018
  • We calculated the optimal exponent values based on the hourly rainfall data observed in South Korea by treating the exponent value as a variable without fixing it as a square in the inverse distance method. For this purpose, rainfall observation stations providing the data are classified into four groups which are located at the Han river upstream, downstream, the Geum river upstream, and the Nakdong river midstream area. A total of 52 cases were analyzed for seven stations in each group. The optimal exponent value of distance was calculated in a case including one base station and four surrounding stations in a group. We applied the golden section search method to calculating this optimum values using rainfall data for 10 years (2004~2013) and verified the optimum values for the last three years (2014~2016). We compared and analyzed two results of the conventional inverse distance method and the inverse distance method in this study. The optimal values of distance exponent obtained in this study were 3.280, 1.839, 2.181, and 2.005 respectively, in the four groups, and totally mean value was 2.326. It is shown the proposed inverse distance method applying the optimal exponent is superior to the conventional inverse distance method.

Development of Flood Risk Index using causal relationships of Flood Indicators (홍수지표의 인과관계를 이용한 홍수위험지수 개발)

  • Lim, Kwang Suop;Choi, Si Jung;Lee, Dong Ryul;Moon, Jang Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1B
    • /
    • pp.61-70
    • /
    • 2010
  • This research presents a methodology to define and apply appropriate index that can measure the risk of regional flood damage. Pressure-State-Response structure has been used to develop the Flood Risk Index(FRI), which allows for a comparative analysis of flood risk assessment between different sub-basins. FRI is a rational assessment method available to improve disaster preparedness and the prevention of losses. The pressure and state index for flood at 117 sub-basins from the year 1980s until the t 10s showed proportional relations, but state index did not decrease even though response index increased. This shows that pressures for flood damage relatively exceed countermeasure for flood. Thus this means we need to strengthen design criteria for flood countermeasure in the future. The FRI is gradually going down in consequence of continuous flood control projects. Flood risk of Han River and Nakdong River area is relatively lower than that of Geum, Seumjin, and Youngsan River area.

Spatio-temporal Distribution of Macrozoobenthos in the Three Estuaries of South Korea (우리나라 3개 하구역 대형저서동물 군집 시공간 분포)

  • LIM, HYUN-SIG;LEE, JIN-YOUNG;LEE, JUNG-HO;SHIN, HYUN-CHUL;RYU, JONGSEONG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.1
    • /
    • pp.106-127
    • /
    • 2019
  • This study aims to understand spatio-temporal variations of macrozoobenthos community in Han River (HRE), Geum River (GRE), and Nakdong River estuaries (NRE) of Korea, sampled by National Survey of Marine Ecosystem. The survey was seasonally performed at a total of 20 stations for three years (2015-2017). Sediment samples were taken three times with van Veen grab of $0.1m^2$) areal size and sieved through a 1 mm pore size mesh on site. A total of 1,008 species were identified with 602 species in HRE, 612 in GRE, and 619 in NRE, showing similar number of species between estuaries. Mean density was $1,357ind./m^2$, showing the high in NRE ($1,357ind./m^2$), mid in GRE ($1,357ind./m^2$), and low in HRE ($1,127ind./m^2$). Mean biomass was $116.8g/m^2$, showing similar variations to density ($174.2g/m^2$ in NRE, $129.0g/m^2$ in GRE, $49.0g/m^2$ in HRE). Polychaeta dominated in number of species and density in three estuaries. Biomass-dominated taxon was Mollusca in HRE and GRE, and Echinodermata in NRE. Polychaetous species dominated all three estuaries over 4% of density, such as Dispio oculata, Heteromastus filiformis and Aonides oxycephala in HRE, Heteromastus filiformis and Scoletoma longifolia in GRE, and Pseudopolydora sp. and Aphelochaeta sp. in NRE, showing various density between estuaries. Community structure was determined by various environmental variables among estuaries such as mean grain size and sorting (HRE), salinity and mean grain size (GRE), and salinity, dissolved oxygen, loss on ignition and mud content (NRE). Our study demonstrates the application of different measures to manage ecosystems in three estuaries. HRE needs to alleviate sedimentary stressors such as sand mining, land-filling, dike construction. Management of GRE should be focused on fresh water control and sedimentary stressors. In NRE, monitoring of dominant benthos and process study on hypoxia occurrence in inner Masan Bay are necessary.

Evaluation of flexible criteria for river flow management with consideration of spatio-temporal flow variation (시·공간적 유량 변화를 고려한 탄력적 하천관리 기준유량 산정 및 평가)

  • Park, Jung Eun;Kim, Han Na;Ryoo, Kyong Sik;Lee, Eul Rae
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.8
    • /
    • pp.673-683
    • /
    • 2016
  • An Idea to estimate flexible criteria for river water use permits was proposed that takes the spatio-temporal flow variation along the river into account, which was applied to the Keumho River, one of the tributary of the Nakdong River in Korea. This idea implies the temporal division of four periods with different criteria, combining flood/non-flood seasons and irrigation/non-irrigation periods, while a single one has been applied throughout the year in the current practice. Through flow regime analysis of daily natural flow simulations at Dongchon and Seongseo, the control points of the study area, Q355 and 1Q10 for non-flood and non-irrigation period, Q275 for non-flood and irrigation period, Q185 for flood and irrigation period were suggested respectively. So, those values that subtract instream flow were determined as the flexible criteria in each season. From the comparison of current practice and the proposed method, it was estimated that $10.6\;million\;m^3/year$ is available for more water use permits without additional development of water storage. Therefore, it is conceived that flexible criteria for river water use permission suggested in this study can contribute to improve the national policies for more efficient water resources management in the future.

Prevalence of Clonorchis sinensis Infection among Residents along 5 Major Rivers in the Republic of Korea

  • Jeong, Young-Il;Shin, Hee-Eun;Lee, Sang-Eun;Cheun, Hyeng-Il;Ju, Jung-Won;Kim, Jung-Yeon;Park, Mi Yeoun;Cho, Shin-Hyeong
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.2
    • /
    • pp.215-219
    • /
    • 2016
  • Clonorchis sinensis is currently the most important parasite affecting public health problems in the Republic of Korea. We investigated the prevalence of C. sinensis infection among residents living along 5 major rivers in Korea. A total of 42,562 individual stool samples were collected from 37 localities and examined using the formalin-ether sedimentation technique. Helminth eggs were detected in 4,052 (9.5%) residents and 3,586 (8.4%) were infected with C. sinensis. The egg positive rate of C. sinensis in Nakdong, Seomjin, Geum, Yeongsan, and Han River was 11.7%, 9.9%, 6.5%, 3.1%, and 1.0%, respectively. The overall prevalence of clonorchiasis by sex was 11.2% in males and 6.2% in females. The age-prevalence was the highest in the 50-59 years band. It has been reconfirmed that the endemicity of clonorchiasis is higher in southern areas of Korea, especially along Nakdong and Seomjin Rivers. A combination of continuous control programs with health education initiatives is urgently required in these highly endemic areas of clonorchiasis in Korea.

Isolation and Identification of Wild Yeasts from Freshwaters and Soils of Nakdong and Yeongsan River, Korea, with Characterization of Two Unrecorded Yeasts (낙동강과 영산강 담수와 주변 토양으로부터 야생효모의 분리 및 동정)

  • Han, Sang-Min;Kim, Ha-Kun;Lee, Hyang-Burm;Lee, Jong-Soo
    • The Korean Journal of Mycology
    • /
    • v.44 no.4
    • /
    • pp.350-354
    • /
    • 2016
  • Diverse wild yeast were isolated from freshwaters and soils of Nakdong and Yeongsan rivers in Korea and identified by the comparison of polymerase chain reaction-amplified nucleotide sequences of the internal transcribed spacer region (including the 5.8S rRNA) and D1/D2 regions of 26S rDNA, using BLAST. In total, 15 strains belonging to 9 species were isolated from 25 samples, out of which Aureobasidium pullulans and Cryptococcus bestiolae were dominant. Candida ghanaensis JSF0127 and Meira geulakonigii JSF0130 were identified as unrecorded yeasts, for which their mycological characteristics were investigated. These unrecorded yeasts formed ascospores and grew in yeast extract peptone dextrose medium containing 5% NaCl.

Hydro-meteorological Effects on Water Quality Variability in Paldang Reservoir, Confluent Area of the South-Han River-North-Han River-Gyeongan Stream, Korea (남·북한강과 경안천 합류 수역 팔당호의 수질 변동성에 대한 기상·수문학적 영향)

  • Hwang, Soon-Jin;Kim, Keonhee;Park, Chaehong;Seo, Wanbum;Choi, Bong-Geun;Eum, Hyun Soo;Park, Myung-Hwan;Noh, Hye Ran;Sim, Yeon Bo;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.4
    • /
    • pp.354-374
    • /
    • 2016
  • This study explored spatiotemporal variability of water quality in correspondence with hydrometeorological factors in the five stations of Paldang Reservoir located in the Han River during 4 years from May 2012 to December 2015. Variability of basic water quality factors were largely related with seasonal fluctuations of hydrology. Temperature stratification occurred in the deep dam station, and prolonged hypoxia was observed during the draught year. Nitrogen nutrients were increased with decreasing inflow in which changing pattern of $NH_4$ reversed to $NO_3$ by the effect of treated wastewater effluent. Phosphorus increase was manifest during the period of high inflow or severe drought. Chl-a variation was reversely related with both flow change and AGP(algal growth potential) variations. Our study demonstrated that water quality variability in Paldang Reservoir was largely attributed to both natural and operational changes of inflow and outflow (including water intake) based on major pollution source of the treated wastewater (total amount of $472{\times}10^3m^3d^{-1}$) entering to the water system from watershed. In the process of water quality variability, meteorological (e.g., flood, typhoon, abnormal rainfall, scorching heat of summer) and hydrological factors (inflow and discharge) were likely to work dynamically with nutrients pulse, dilution, absorption, concentration and sedimentation. We underline comprehensive limnological study related to hydro-meteorolology to understand short- and long-term water quality variability in river-type large reservoir and suggest the necessity of P-free wastewater treatment for the effective measure of reducing pollution level of Paldang drinking water resource.