• Title/Summary/Keyword: Hamiltonian-laceable

Search Result 4, Processing Time 0.019 seconds

Fault Hamiltonicity of Meshes with Two Wraparound Edges (두 개의 랩어라운드 에지를 갖는 메쉬의 고장 해밀톤 성질)

  • 박경욱;이형옥;임형석
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.7_8
    • /
    • pp.434-444
    • /
    • 2003
  • In this paper, we consider the hamiltonian properties of m$\times$n (m$\geq$2, n$\geq$3) mesh networks with two wraparound edges on the first row and last row, called M$_2$(m, n), in the presence of a faulty node or link. We prove that M$_2$(m, n) with odd n is hamiltonian-connected and 1-fault hamiltonian. In addition, we prove that M$_2$(m, n) with even n is strongly hamiltonian laceable and 1-vertex fault tolerant strongly hamiltonian laceable.

Strongly Hamiltonian Laceability of Mesh Networks (메쉬 연결망의 강한 해밀톤 laceability)

  • Park Kyoung-Wook;Lim Hyeong-Seok
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.8
    • /
    • pp.393-398
    • /
    • 2005
  • In interconnection networks, a Hamiltonian path has been utilized in many applications such as the implementation of linear array and multicasting. In this paper, we consider the Hamiltonian properties of mesh networks which are used as the topology of parallel machines. If a network is strongly Hamiltonian laceable, the network has the longest path joining arbitrary two nodes. We show that a two-dimensional mesh M(m, n) is strongly Hamiltonian laceabie, if $m{\geq}4,\;n{\geq}4(m{\geq}3,\;n{\geq}3\;respectively)$, and the number of nodes is even(odd respectively). A mesh is a spanning subgraph of many interconnection networks such as tori, hypercubes, k-ary n-cubes, and recursive circulants. Thus, our result can be applied to discover the fault-hamiltonicity of such networks.

Fault-hamiltonicity of Bipartite Double Loop Networks (이분 그래프인 이중 루프 네트워크의 고장 해밀톤 성질)

  • 박정흠
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.1_2
    • /
    • pp.19-26
    • /
    • 2004
  • In this paper, we investigate the longest fault-free paths joining every pair of vertices in a double loop network with faulty vertices and/or edges, and show that a bipartite double loop network G(mn;1, m) is strongly hamiltonian-laceable when the number of faulty elements is two or less. G(mn;1, m) is bipartite if and only if m is odd and n is even.

Edge Fault Hamiltonian Properties of Mesh Networks with Two Additional Links (메쉬에 두 개의 링크를 추가한 연결망의 에지 고장 해밀톤 성질)

  • Park, Kyoung-Wook;Lim, Hyeong-Seok
    • The KIPS Transactions:PartA
    • /
    • v.11A no.3
    • /
    • pp.189-198
    • /
    • 2004
  • We consider the fault hamiltonian properties of m ${\times}$ n meshes with two wraparound links on the first row and the last row, denoted by M$_2$(m,n), (m$\geq$2, n$\geq$3). M$_2$(m,n), which is bipartite, with a single faulty link has a fault-free path of length mn-l(mn-2) between arbitrary two nodes if they both belong to the different(same) partite set. Compared with the previous works of P$_{m}$ ${\times}$C$_{n}$ , it also has these hamiltonian properties. Our result show that two additional wraparound links are sufficient for an m${\times}$n mesh to have such properties rather than m wraparound links. Also, M$_2$(m,n) is a spanning subgraph of many interconnection networks such as multidimensional meshes, recursive circulants, hypercubes, double loop networks, and k-ary n-cubcs. Thus, our results can be applied to discover fault-hamiltonicity of such interconnection networks. By applying hamiltonian properties of M$_2$(m,n) to 3-dimensional meshes, recursive circulants, and hypercubes, we obtain fault hamiltonian properties of these networks.