• Title/Summary/Keyword: Hamiltonian (g, f)-factor

Search Result 2, Processing Time 0.017 seconds

BINDING NUMBER AND HAMILTONIAN (g, f)-FACTORS IN GRAPHS

  • Cai, Jiansheng;Liu, Guizhen
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.383-388
    • /
    • 2007
  • A (g, f)-factor F of a graph G is Called a Hamiltonian (g, f)-factor if F contains a Hamiltonian cycle. The binding number of G is defined by $bind(G)\;=\;{min}\;\{\;{\frac{{\mid}N_GX{\mid}}{{\mid}X{\mid}}}\;{\mid}\;{\emptyset}\;{\neq}\;X\;{\subset}\;V(G)},\;{N_G(X)\;{\neq}\;V(G)}\;\}$. Let G be a connected graph, and let a and b be integers such that $4\;{\leq}\;a\;<\;b$. Let g, f be positive integer-valued functions defined on V(G) such that $a\;{\leq}\;g(x)\;<\;f(x)\;{\leq}\;b$ for every $x\;{\in}\;V(G)$. In this paper, it is proved that if $bind(G)\;{\geq}\;{\frac{(a+b-5)(n-1)}{(a-2)n-3(a+b-5)},}\;{\nu}(G)\;{\geq}\;{\frac{(a+b-5)^2}{a-2}}$ and for any nonempty independent subset X of V(G), ${\mid}\;N_{G}(X)\;{\mid}\;{\geq}\;{\frac{(b-3)n+(2a+2b-9){\mid}X{\mid}}{a+b-5}}$, then G has a Hamiltonian (g, f)-factor.

MINIMUM DEGREE AND INDEPENDENCE NUMBER FOR THE EXISTENCE OF HAMILTONIAN [a, b]-FACTORS

  • Zhou, Sizhong;Pu, Bingyuan
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.325-331
    • /
    • 2010
  • Let a and b be nonnegative integers with 2 $\leq$ a < b, and let G be a Hamiltonian graph of order n with n > $\frac{(a+b-5)(a+b-3)}{b-2}$. An [a, b]-factor F of G is called a Hamiltonian [a, b]-factor if F contains a Hamiltonian cycle. In this paper, it is proved that G has a Hamiltonian [a, b]-factor if $\delta(G)\;\geq\;\frac{(a-1)n+a+b-3)}{a+b-3}$ and $\delta(G)$ > $\frac{(a-2)n+2{\alpha}(G)-1)}{a+b-4}$.