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ABSTRACT. Let a and b be nonnegative integers with 2 < a < b, and
let G be a Hamiltonian graph of order n with n > W‘}l An

la,b]-factor F' of G is called a Hamiltonian [a,b|-factor if F' contains a
Hamiltonian cycle. In this paper, it is proved that G has a Hamiltonian

. - — — G)—
[a, b-factor if §(G) > (2=Drretb3 4pq 5(G) > (exBni2aGi-t
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1. Introduction

All graphs considered in this paper will be finite and undirected graphs with-
out loops or multiple edges. In particular, a graph is said to be a Hamiltonian
graph if it contains a Hamiltonian cycle. Let G be a graph. We denote by
V(@) and E{(G) the set of vertices and the set of edges, respectively. For any
z € V{(G), we denote by d(z) the degree of z in G and by Ng(x) the set of
vertices adjacent to z in G. For § C V(G), we define Ng(9) = UzesNg(z),
and G[9] is the subgraph of G induced by §. We denote by G — S the subgraph
obtained from G by deleting vertices in § together with the edges incident to
vertices in S. Denote by a{G) the independence number of a graph G and by
0(G) the minimum degree of vertices in G. A vertex set S C V(G) is called
independent if G[S] has no edges.

Let a and b be integers with 0 < a < b. An [, b|-factor of a graph G is defined
as a spanning subgraph F of G such that a < dp(z) < bfor each z € V(G) (where
of course dy denotes the degree in F). And if a = b = k, then an [a, b]-factor is
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called a k-factor. An [a,b]-factor F of G is called a Hamiltonian [a, b]-factor if F'
contains a Hamiltonian cycle. And if @ = b = k, then a Hamiltonian [a, b]-factor
is simply called a Hamiltonian k-factor. The other terminologies and notations
not given here can be found in [1].

Many authors have investigated factors [2-8]. Y. Gao, G. Li and X. Li [9]
gave a degree condition for a graph to have a Hamiltonian k-factor. H. Matsuda
[10] showed a degree condition for graphs to have Hamiltonian [a, b]-factors. S.
Zhou and B. Pu [11] obtained a neighborhood condition for a graph to have a
Hamiltonian [a, b]-factor.

The following results on k-factors, Hamiltonian k-factors and Hamiltonian
[a, b]-factors are known.

Theorem 1. 8 Let k > 2 be an integer and let G be a graph with n vertices. If
k is odd, then suppose that n is even and G is connected. Let G satisfy

n>4k+1—-4vEk+2,

(n+2) and

§(G) >
Then G has a k-factor.

75 (k= 2)n+2a(G) - 2).

Theorem 2. °! Let k > 2 be an integer and let G be a graph of order n >
12(k — 2)?2 + 2(5 — a)(k — 2) — a. Suppose that kn is even, §(G) > k and
n+a
ma‘X{dG(x)7 dG(y)} 2

for each pair of nonadjacent vertices x and y in G, where a = 3 for odd k and
a =4 for even k. Then G has a Hamiltonian k-factor if for a given Hamiltonian
cycle C, G — E(C) is connected.

Theorem 3. [19 Let a and b be integers with 2 < a < b, and let G be a

Hamiltonian graph of order n > %b—ﬂ. Suppose that 6(G) > a and
(a—2)n

a+b—4

for each pair of nonadjacent vertices x and y of V(G). Then G has a Hamilton-
ian [a, b]-factor.

max{dg(x),dc(y)} > +2

Theorem 4. '] Let a and b be nonnegative integers with 2 < a < b, and let G
be a Hamiltonian graph of order n with n > (a+b—3)(2ba_+2b—6)_a+2. Suppose for
any subset X C V(G), we have

Nex) =vie) i 1xiz | L2

el 2 2 i i< | 252,
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Then G has a Hamiltonian [a, b]-factor.
G. Liu and L. Zhang [12] proposed the following problem.

Problem. Find sufficient conditions for graphs to have connected [a, b]-factors
related to other parameters in graphs such as binding number, independence
number, neighborhood and connectivity.

We now show our main theorem which partially solves the above problem.

Theorem 5. Let a and b be nonnegative integers with2 < a < b, and let G be a
Hamiltonian graph of order n with n > (a+b_i)(;+b_3). Suppose that G satisfies

(a—n+a+b-3

>
(QG) > P and
(e —2n+2a(G) -1
3G > a+b-4

Then G has a Hamiltonian {a, b]-factor.
2. The Proof of Theorem 5

The proof of our main Theorem relies heavily on the following lemma. Lemma
2.1 is a well-known necessary and sufficient for a graph to have a (g, f)-factor
which was given by Lovasz. The following result is the special case which we use
to prove our main theorem.

Lemma 2.1. "3 Let G be a graph, and let a and b be two nonnegative integers
with a < b. Then G has an [a, b]-factor if and only if

56(5,T) = bS] + dar_s(T) — alT| > 0
for any disjoint subsets S and T of V(G).

Proof of Theorem 5. According to assumption, G has a Hamiltonian cycle C.
Let G' = G — E(C). Note that V(G') = V(G).

Obviously, G has a Hamiltonian [a, b]-factor if and only if G’ has an {a—2, b—2}-
factor. By way of contradiction, we assume that G’ has no [a — 2, b — 2]-factor.
Then, by Lemma 2.1, there exist disjoint subsets S and T of V/(G'} such that

56+(S,T) = (b— 2)|8] + der_s(T) — (a — 2)|T| < —1. (1)

We choose such subsets S and T so that |T| is as small as possible.
If T =0, then by (1), =1 > §¢/(S,T) = (b—2)|S| > |S| > 0, which is a
contradiction. Hence, T # . Set

h =min{dg_g(z): z € T}.
We choose z1 € T satisfying dg_gs{z1) = h. Clearly,
6(G) < dg(x1) < dg-s(z1) + 1S =h+1S]. (2)

Now, we prove the following claims.
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Claim 1. dei—g(z) <a—3forallz e T.
Proof. If dgr—g(z) > a — 2 for some x € T, then the subsets S and T\ {z}
satisfy (1). This contradicts the choice of S and T
Claim 2. dg_s(z) <dgi—g{z)+2<a-1foralzeT.
Proof. Note that G’ = G — E(C). Thus, we get from Claim 1
do-s(z) <dg_s(z) +2<a-1

forallz € T.

According to the definition of h and Claim 2, we obtain 0 < h < a — 1. The
proof splits into two cases by the value of h.

Case 1. h=0.

Let X ={ze€T:dg-s(z) =0}, Y={z€T:dg-s(z) =1}, 1 = {z €
Y : Ng_s(z) CT} and Y3 =Y — Y. Then the graph induced by Y3 in G- S
has maximum degree at most 1. Let Z be a maximum independent set of this
graph. Obviously, |Z| > 3|Y1]. In terms of our definitions, X U Z U Y3 is an
independent set of G. Thus, we have

o) 2 IX| +121+ [l > [X| 4 Gl + 5%l = [XT+ 5[V (3)
Using (1), (2), (3) and Claim 2, we obtain
a(G)=1 2 |X|+5IY|+80(S,T)
= X1+ G1Y]+ (6~ 28] + da-s(T) ~ (@~ D[T]
> X1+ 31¥]+ (b~ 2)IS] + do_s(T) 2] ~ (@~ 2)IT]
= 1X]+ 3J¥1+ (- 28| + dg-s(T) ~ alT)
= IX|+ Y]+ (b~ 2)IS| + da-s(T\ (X UY)) + Y| - alT|

= XTI+ 5I¥]+ (b= 2)IS] + do_s(T\ (X UY)) — alT]

v

X1+ S1¥] + (b - 2)|8] + 2T — (X UY)| - al]

= (-2)|5| - (a-2)IT| - (| X|+ %IYI)
2 (5=2)0(G) - (a = 2)|T| - a(G),
the above inequality implies
(a—2)|IT| = (b - 2)0(G) — 2a(G) + 1. (4)

Subcase 1.1. a=2.
From (4), we have
a-2)|T|+2a(G)-1  20(G)-1

(
§(G) < 5 =——3 (5)




On the other hand, by the assumption of the theorem, we get

(a—2n+2a(G) -1 2a(G)-1
a+b-4 B

3G) >
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which contradicts (5).
a > 3.
Using (2), (4) and |S| + |T| < n, we obtain

Subcase 1.2.

0

which implies

The above inequality contradicts §(G) > =2

<

IA

n—[S| =T
n—4(G)

b—-2

(b 2)5(G) —2a(G) + 1

(@a=2)n — (a+b—4)6(G) + 2a(G) — 1

a—2

a—2

(a—2)n+20(G) — 1

§(G) <

Case 2. 1<h<a-1
In terms of (1) and |S| + |T| € n, we get

-1

that is,

v v

I

v

AV

36/(8,T) = (b~ 2)|8] + de-5(T) — (a — 2)|T|

a+b—4
In42a(G)—1 )

a+b—4

(6 —2)|S| + da—s(T) = 2|T| - (a - 2)|T|
(b—2)|S| + dg-s(T) — a|T|

(

(b
(b
(

5] <

From (2) and (6), we have

Subcase 2.1.

G <iSj+h<

h=1
According to (7), we obtain

3(G) <

That contradicts §(@) > {e=bntatb=3

Subcase 2.2.

{a—1n -1
a+b—-3

a+b—3

2<h<a-1.

(a

—h)n—1

b—2)IS| + h|T} — o|T|

2)IS| — (a—)[T]|

2)|S] = (a—h)(n—|5])
a+b—h-2)|S - (a—h)n,

{a—hn-1
a+b—h—-2

+h

a+b—h—-2 )

+1=

(a—ln+a+db-4

a+b-3
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Set f(h) = EI‘IJ:T’L_)Z__—QI+h. Thenwegetby2 < h<a—landn > (‘L—Jrl’"%(?i_i)
—-n{fa+b—h—-2)+(a—h)n—1

"(hy = 1
F (a+b—h—2)2 +
. —(b-2m—-1
= Gtb—h—op 1
—b-2)n-1
< R D
S Taxp-ap !
—(a+b-5)(a+b-3)-1
1
< CETIE +
= 0.
I . _ . (a+b—5)(at+b=3
Hence, f(h) attains its maximum value at b = 2. Using (7) and n > {2+ b)_(g )
(a-2)n—-1
] < < S A
©) < s <=1

B ((1—2)((1L-|-b—3)n—(a-i-b—?))+2
B (a+b—4){a+b-3)

_ a-1)(a+b-4)-(b-2))n—(a+b—3) 49
(a+b—4){a+b-13)

_ (a—1)(a—{-b—4)n—(b—2)n—(a-l—b—3)_|_2
(a+b—4){a+b—3)

(a—(a+b—4)n—(a+bdb-5)(a+b—-3)—(a+b—-3)

< @tb—Da+b_3) +2
_ (a——1)(a—i—b—4)n——(cH—b—4)(oH—b—3)_|_2
(a+b—4){a+b-3)
_ {a-1)n+a+b-3
B a+b-3 ’
which contradicts §(G) > (a—la)i%"'b_?i. From the above contradictions we

deduce that G’ has an [a — 2, b— 2]-factor. This completes the proof of Theorem
5.
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