• 제목/요약/키워드: Halomonas

검색결과 29건 처리시간 0.029초

Halomonas sp. ES 10에 의한 alkaline protease의 생산 (Production of alkaline protease by the moderate halophile, Halomonas sp. ES 10)

  • 김찬조;김교창;오만진;최성현
    • Applied Biological Chemistry
    • /
    • 제34권4호
    • /
    • pp.307-311
    • /
    • 1991
  • 무염조건에서는 생육할 수 없고 2 M의 NaCl 존재하에서 가장 잘 생육하는 중도 호염성균이며 alkaline protease를 생산하는 ES 10균주를 멸치젓에서 분리하여 Halomonas속 균으로 동정하였다. 이 균은 합성배지인 TSM배지에 DL-alanine의 첨가로 생육이 촉진되고 L-proline의 첨가로 생육이 저해되었다. 이 균의 세포내 $Na^+$함량은 Bacillus subtilis나 E. coli보다 5배 정도 많았으며 $K^+$함량은 25배, $Mg^{2+}$함량은 38배 정도 많았다. 이 균의 Protease 생산은 NaCl 1 M첨가된 Norberg와 Hofsten배지에서 $20^{\circ}C$로 배양했을 때 가장 양호하였다.

  • PDF

Halomonas sp. ES-10균주가 생산하는 효소세제용 알칼리성 Protease

  • 김찬조;이재숙;최성현;오만진
    • 한국미생물·생명공학회지
    • /
    • 제25권1호
    • /
    • pp.51-55
    • /
    • 1997
  • To utilize the alkaline protease produced by Halomonas sp. ES-10 as an enzyme detergent, the crude enzyme was obtained by methanol precipitation and lyophilization. And it was processed to coated enzyme.The best mixing ratio of components such as coated enzyme, builders, actives, fillers and adjuvants on detergency was examined, and temperature and pH influencing detergency were also tested. Detergency test 0.15% detergent solution was carried out on EMPA test cloth #116 with shaking(90 rpm) for 10 min after 30 min of pretreatment. The detergent which contained coated-enzyme 1%, Zeolite 4A 20%, Tween 80 1. 5%, sodium borate 30%, sodium meta silicate 7.5% and water 40% showed about 90% of washing efficiency at 40$\circ $C and pH 10.0.

  • PDF

Partial Purification and Characterization of Halotolerant Alkaline Protease from Halomonas marisflava KCCM 10457 Isolated from Salt-fermented Food

  • In, Man-Jin;Oh, Nam-Soon;Kim, Dong-Chung
    • Journal of Applied Biological Chemistry
    • /
    • 제48권2호
    • /
    • pp.75-78
    • /
    • 2005
  • Halotolerant protease produced by Halomonas marisflava KCCM 10457 was partially purified through ammonium sulfate precipitation and Sephacryl S-200HR gel permeation chromatography. Optimal pH and temperature of protease were 11.0 and $45^{\circ}C$, respectively. Enzyme activity was inhibited by $Cu^{2+}$, $Hg^{2+}$, $Fe^{2+}$, and $Fe^{3+}$, and selectively inhibited by p-chloromercuribenzoic acid (PCMB), suggesting this enzyme is cysteine protease. The enzyme is halotolerant, because it retained 77% of original activity in presence of 3.33 M NaCl. The protease showed broad substrate specificity to various natural proteins; BSA, casein, egg albumin, gelatin, and hemoglobin.

호염성 박테리아 기반 코팅재의 염소이온 확산계수 평가 (Evaluation of Chloride Ion Diffusion Coefficient of Coating Materials based on Halo-philic Bacteria)

  • 윤현섭;이재욱;양근혁
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 가을 학술논문 발표대회
    • /
    • pp.159-160
    • /
    • 2020
  • This study examined the potentials for developing a biological coating material with high chloride resistance. The bacteria strains isolated were Halomonas alkaliphile, Halomonas venusta, and Sulfidobacter mediterraneus. Test results revealed that the developed approach is very promising in reducing the chloride ion diffusion coefficient of concrete.

  • PDF

NaCl Concentration-Dependent Aminoglycoside Resistance of Halomonas socia CKY01 and Identification of Related Genes

  • Park, Ye-Lim;Choi, Tae-Rim;Kim, Hyun Joong;Song, Hun-Suk;Lee, Hye Soo;Park, Sol Lee;Lee, Sun Mi;Kim, Sang Hyun;Park, Serom;Bhatia, Shashi Kant;Gurav, Ranjit;Sung, Changmin;Seo, Seung-Oh;Yang, Yung-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권2호
    • /
    • pp.250-258
    • /
    • 2021
  • Among various species of marine bacteria, those belonging to the genus Halomonas have several promising applications and have been studied well. However, not much information has been available on their antibiotic resistance. In our efforts to learn about the antibiotic resistance of strain Halomonas socia CKY01, which showed production of various hydrolases and growth promotion by osmolytes in previous study, we found that it exhibited resistance to multiple antibiotics including kanamycin, ampicillin, oxacillin, carbenicillin, gentamicin, apramycin, tetracycline, and spectinomycin. However, the H. socia CKY01 resistance pattern to kanamycin, gentamicin, apramycin, tetracycline, and spectinomycin differed in the presence of 10% NaCl and 1% NaCl in the culture medium. To determine the mechanism underlying this NaCl concentration-dependent antibiotic resistance, we compared four aminoglycoside resistance genes under different salt conditions while also performing time-dependent reverse transcription PCR. We found that the aph2 gene encoding aminoglycoside phosphotransferase showed increased expression under the 10% rather than 1% NaCl conditions. When these genes were overexpressed in an Escherichia coli strain, pETDuet-1::aph2 showed a smaller inhibition zone in the presence of kanamycin, gentamicin, and apramycin than the respective control, suggesting aph2 was involved in aminoglycoside resistance. Our results demonstrated a more direct link between NaCl and aminoglycoside resistance exhibited by the H. socia CKY01 strain.

Growth and Physiological Properties of Wild Type and Mutants of Halomonas subglaciescola DH-l in Saline Environment

  • Ryu, Hye Jeong;Jeong, Yoo Jung;Park, Doo Hyun
    • Journal of Microbiology
    • /
    • 제42권3호
    • /
    • pp.174-180
    • /
    • 2004
  • A halophilic bacterium was isolated from fermented seafood. The 16S rDNA sequence identity between the isolate and Halomonas subglaciescola AJ306801 was above 95%. The isolate that did not grow in the condition without NaCl or in the condition with other sodium (Na$\^$+/) or chloride ions (Cl$\^$-/) instead of NaCl was named H. subglaciescola DH-l. Two mutants capable of growing without NaCl were obtained by random mutagenesis, of which their total soluble protein profiles were compared with those of the wild type by two-dimensional electrophoresis. The external compatible solutes (betaine and choline) and cell extract of the wild type did not function as osmoprotectants, and these parameters within the mutants did not enhance their growth in the saline environment. In the proton translocation test, rapid acidification of the reactant was not detected for the wild type, but it was detected for the mutant in the condition without NaCl. From these results, we derived the hypothesis that NaCl may be absolutely required for the energy metabolism of H. subglaciescola DH-l but not for its osmoregulation, and the mutants may have another modified proton translocation system that is independent of NaCl, except for those mutants with an NaCl-dependent system.

Influence of NaCl on the Growth and Metabolism of Halomonas salina

  • YUN , SU-HEE;SANG , BYUNG-IN;PARK, DOO-HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권1호
    • /
    • pp.118-124
    • /
    • 2005
  • In this research, we examined the effect of NaCl on the growth, energy metabolism, and proton motive force of Halomonas salina, and the effect of compatible solutes on the bacterium growing in the high salinity environment. H. salina was isolated from seawater and identified by 16srDNA sequencing. The growth of H. salina was not enhanced by the addition of external compatible solutes (choline and betaine) in the high salinity environment. The resting cells of H. salina absorbed more glucose in the presence of 2.0 M NaCl than in its absence. H. salina did not grow in the medium with either KCl, RbCl, CsCl, $Na_2SO_4$, or $NaNO_3$, in place of NaCl. The optimal concentration of NaCl for the growth of H. salina ranged from 1.4 M to 2.5 M, and the growth yield was decreased in the presence of NaCl below 1.4M and above 2.5M. The activity of isocitrate dehydrogenase, pyruvate dehydrogenase, and malate dehydrogenase of H. salina was not inhibited by NaCl in in vitro test. The proton translocation of H. salina was detected in the presence of NaCl only. These results indicate that NaCl is absolutely required for the normal growth and energy metabolism of H. salina, but the bacterial growth is not enhanced by the compatible solutes added to the growth medium.

Halomonas sp. ES 10이 생산하는 alkaline protease의 특성 (Characteristics of the alkaline protease from the moderate halophile, Halomonas sp. ES 10)

  • 김찬조;오만진;최성현
    • Applied Biological Chemistry
    • /
    • 제35권4호
    • /
    • pp.237-241
    • /
    • 1992
  • Halomonas sp. ES 10이 생산하는 protease를 methanol 침전, Sephadex G-150, G-200 및 DEAE-Sephadex A-50으로 여과하여 비활성이 1,014 units/mg protein, 수율이 7%로 정제하였다. 이 효소의 작용 최적온도 및 pH는 $35^{\circ}C$ 와 pH 11.0 이었고, $50^{\circ}C$ 에서 40분에 70%의 잔존활성을 보였으며 $pH\;7.5{\sim}11.0$ 범위에서 안정하였다. 정제효소의 우유 casein에 대한 Km값은 7.4 mg/ml 이었다. $Li^+$, $Ca^{2+}$, SDS, Tween 80 등은 효소 활성을 다소 증가시키고 $Hg^{2+}$과 EDTA는 심히 저해하였다. DFP와 PMSF에 의해서는 각각 63%, 107%의 상대활성을 보여 이 효소는 serine protease가 아님을 시사하였다. 0.5 M과 1 M의 NaCl 농도에서 각각 95%와 65%의 상대활성을 보여 일반 미생물의 protease 보다 각각 20%, 15%씩 상대활성이 높았다.

  • PDF

염소이온 저감능 박테리아가 모르타르의 염소이온 농도에 미치는 영향 (Effect of Chloride Ion-reducing Bacteria on the Chloride ion Concentration in Cement Mortars)

  • 황지원;윤현섭;양근혁
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.49-50
    • /
    • 2022
  • This study examined the potential of halophilic bacteria in reducing the chloride ion concentration within the cement mortars exposed to chloride attack. As a result of the experiment, the compressive strength of mortar with Halomonas venusta showed an equivalent performance to that of counterpart mortars without bacteria. Also, the chloride ion concentration measured in mortars including Halomonas Venusta was 71% lower than that of the counterpart mortars without bacteria.

  • PDF

Halomonas subglaciescola DH-1의 생장에 미치는 염화나트륨의 영향 (Effect of NaCl on Halomonas subglaciescola DH-1 Incapable of Growing at Non-Salinity)

  • 나병관;유영선;박두현
    • 한국미생물·생명공학회지
    • /
    • 제35권4호
    • /
    • pp.298-303
    • /
    • 2007
  • 호염성세균 H. subglaciescola DH-1은 염화나트륨이 없거나 0.8 M 이하로 존재하는 환경에서 생장하지 못한다. 이 호혐성세균은 2.0 M의 염화나트륨이 존재하는 조건에서는 최적온도($30^{\circ}C$)보다 높은 $40^{\circ}C$에서 생장이 가능하였으나, 0.8 M의 염화나트륨이 존재하는 조건에서는 생장이 크게 저하되었다. 세포추출물을 염화나트륨이 존재하는 조건에서 $50^{\circ}C$로 1시간 동안 열처리하였을 때 세포내 효소의 활성이 유지되었으나, 염화나트륨이 없는 조건에서 열처리하였을 때 효소의 활성은 유지되지 않았다. 반면, 대장균의 세포추출물의 효소활성은 1.0 M이상의 염화나트륨이 존재할 때 온도 또는 pH와 관계없이 측정되지 않았다. H. subglaciescola DH-1은 pH $7{\sim}10$의 범위에서 생장하였고, 생장을 위한 최적 pH는 8이었다. 이러한 생리적인 특성으로부터 염화나트륨은 H. subglaciescola DH-1의 물질대사를 위한 필수적인 무기영양소라는 사실을 유추할 수 있다.