• 제목/요약/키워드: Haloacetic Acids (HAAs)

검색결과 26건 처리시간 0.017초

국내 정수장의 소독부산물 생성 특성 (Characteristics of Disinfection By-Products Formation in Korea)

  • 김진근;정상기;신창수;조혁진
    • 상하수도학회지
    • /
    • 제19권3호
    • /
    • pp.301-311
    • /
    • 2005
  • The characteristics of disinfection by-products (DBPs) formation at 28 water treatment plants in Korea were investigated. Investigated species of DBPs were trihalomethanes (THMs), haloacetic acids (HAAs) and chloral hydrate (CH). The maximum concentration of THMs was $84.1{\mu}g/L$, minimum and the averages were $6.9{\mu}g/L$ and $27.8{\mu}g/L$, respectively; the maximum concentration of $HAA_5$ was $90.8{\mu}g/L$, minimum and the averages were $3.8{\mu}g/L$ and $26.7{\mu}g/L$, respectively; while the maximum concentration of CH was $29.5{\mu}g/L$, minimum and the averages were $0.5{\mu}g/L$ and $7.4{\mu}g/L$, respectively. On the other hand, DBPs levels during summer months, when the water temperature was near $25^{\circ}C$, were nearly twice as great as DBPs levels during the winter season. The ratio of $THMs/HAA_5$ was 1.07, and $HAA_5$ and THMs were the dominant species of DBPS in the Kum-Sumjin river and Nakdong river, respectivley.

THMs, HAAs의 종분포 (Speciation of THMs, HAAs)

  • 김진근
    • 대한환경공학회지
    • /
    • 제28권11호
    • /
    • pp.1135-1140
    • /
    • 2006
  • 국내 정수장에서 염소소독시 발생하는 소독부산물인 트리할로메탄(THMs), 할로아세틱에시드(HAAs)의 발생농도와 각각의 종별 분포현황을 조사하였다. 조사대상은 일반적인 정수처리공정으로 구성된 한강, 금강, 섬진강, 낙동강 수계의 1개 정수장씩 총 4개소였다. THMs의 발생농도는 평균 26.9 ppb, 최대 46.7 ppb, 최소 11.0 ppb였으며, $HAA_5$의 발생농도는 평균 25.4 ppb, 최대 57.1 ppb, 최소 9.7 ppb였다. 계절적으로는 동절기에 농도가 낮았고 하절기에 높았다. THMs의 종별 분포를 조사한 결과 클로로포름의 비율이 평균 77%로 가장 높았고 다음으로는 브로모디클로로메탄(20%)이 높게 검출되었으며, 브로모포름의 농도는 정량한계 미만이었다. $HAA_5$의 경우 디클로로아세틱에시드(DCAA)와 트리클로로아세틱에시드(TCAA)의 합이 $HAA_5$의 97%를 차지하는 것으로 조사되었다. 그러나 한강수계의 경우는 이 비율이 평균 90%로 다소 낮았으며, 특히 겨울철에 비율이 가장 낮았다. 한편, 하절기를 제외하고는 DCAA가 TCAA보다 높은 것으로 조사되었다.

광분해에 의한 용존 유기물질의 분자량 변화가 소독부산물 생성능에 미치는 영향 (Changes in Molecular Weight of Dissolved Organic Matter by Photodegradation and their Subsequent Effects on Disinfection By-Product Formation Potential)

  • 임정희;허진
    • 대한환경공학회지
    • /
    • 제35권11호
    • /
    • pp.769-775
    • /
    • 2013
  • 본 연구에서는 두 가지 기원의 표준 휴믹물질 혼합 시료와 Suwannee River fulvic acid (SRFA)을 사용하여 광분해로 인한 용존 유기물질의 스펙트럼 특성 변화와 이에 따른 소독 부산물 생성능의 변화를 조사하였다. 혼합시료의 염소소독부산물 발생잠재력(DBPFP)은 specific UV absorbance (SUVA) 값에 비례하여 증가하였다. 7일간 광분해 후 혼합시료의 SUVA 값은 모두 감소하였다. 그러나 동일 시료에서 DBPFP 값은 SUVA 감소폭보다 적었다. 비록 두 변수 사이에 직선성은 유지되었으나 같은 SUVA 범위 내에서의 DBPFP 값은 오히려 감소하는 경향을 보였다. 이 결과는 광분해로 인해 염소소독부산물 전구체 역할을 하는 비방향족 물질이 생성될 수 있음을 시사하였다. SRFA 시료에 대해 4일과 13일 광분해하여 각각 저분자와 고분자 부분에서의 DBPFP 값을 비교한 결과 광분해 후 유기탄소 당 염소소독부산물 발생량 변화양상은 염소소독부산물 종류에 따라 다르게 나타났다. 유기탄소 당 trihalomethenes (THMs) 발생은 광분해 후 고분자 부분에서 더 높았으나 haloacetic acids(HAAs)의 경우 고분자와 저분자 부분 사이의 유의한 차이가 관찰되지 않았다. 광분해 시간에 따른 유기탄소 당 DBPFP 값 변화 패턴도 용존 유기물 분자량에 따라 다르게 나타났다. THMs의 경우 고분자 부분에서는 광분해 시간에 따라 증가하는 경향을 보였으나 저분자에서는 큰 변화를 보이지 않았다. 반면 HAAs은 고분자에서 지속적인 감소 경향을, 저분자 부분에서는 증가 후 다시 감소하는 경향을 보였다. 본 연구결과 수중 유기물질은 전반적으로 광분해에 따라 소독부산물 생성능이 초기에 오히려 증가할 수 있으며 광분해 시간이 충분히 지속된 후에야 감소함을 보여주었다.

소독부산물 생성에 미치는 물리화학적인 인자 영향 (The Effect of Physical Chemistry Factors on Formation of Disinfection by-products)

  • 정용;김준성
    • 한국환경과학회지
    • /
    • 제14권10호
    • /
    • pp.965-972
    • /
    • 2005
  • This research studied the effect of factors that are able to form disinfection by-products (DBPs) of chlorination, including natural organic matter (NOM) with sewage, bromide ions, pH and contact time. Trihalomethane (THMs) yield of $0.95{\mu}mol/mg$ was higher than other DBPs yield for the chlorinated humic acid samples. THMs yield of sewage sample was $0.14{\mu}mol/mg$ and haloacetonitriles (HANs) yield in the sewage samples were $0.13{\mu}mol/mg$ but only $0.02{\mu}mol/mg$ for the humic acid samples. As the concentration of bromide ions increased, brominated DBPs increased while chlorinated DBPs decreased, because bromide ions produce brominated DBPs. THMs were highest $(55.55{\mu}g/L)$ at a pH of 7.9 and haloacetic acids (HAAs) were highest $(34.98{\mu}g/L)$ at a pH of 5. Also THMs increased with increasing pH while HAAs decreased with increasing pH. After chlorination, the rate of THMs and HAA formation are faster at initial contact time and then reaches a nearly constant value after 24 hours. This study considers ways to reduce DBP formation by chlorination.

정수처리공정상 염소소독부산물형성에 미치는 오존의 영향 (Ozone Effect on the Formation of Chlorine Disinfection Byproducts in Water Treatment Process)

  • 성낙창;박현석;이성식;이용희;이종팔;윤태경
    • 한국환경과학회지
    • /
    • 제13권1호
    • /
    • pp.55-59
    • /
    • 2004
  • The effect of ozone on the formation and the removal of disinfection byproducts(DBPs) of chlorination process was studied to elucidate the performance of water treatment process. The samples of raw water, prechlorination process, and preozonation process were analyzed quantitatively according to the Standard Methods for the Examination of drinking water. As a result, most of total trihalomethanes(THMs) which were formed in prechlorine treatment process was not removed in the preozonation process. Most of haloacetic acids(HAAs), haloacetonitriles(HANs), and chloral hydrate(CH) was removed in sedimentation and biological activated carbon(BAC) filtration processes. However, DBPs were increased more or less by postchlorine step. In particular, the formation of THMs and HAAs depends on ozone more than chlorine, but, the formation of HANs and CH depends on chlorine more than ozone. The seasonal variation of DBPs concentration for the year needs to be investigated to study the temperature effect because DBPs strongly depend on temperature among various efficient factors.

염소 및 오존소독시 정수처리공정별 소독부산물 발생 변화 (DBPs Variation by Chlorination and Preozonation in Drinking Water)

  • 김준성;최용욱;정용
    • 한국물환경학회지
    • /
    • 제21권6호
    • /
    • pp.676-681
    • /
    • 2005
  • This study was researched for disinfection by-products (DBPs) by preozonation, prechlorination and/or postchlorination. DBPs including trihalomethanes (THMs), haloacetic acids (HAAs), halonitriles, and aldehydes were analyzed by the treatment steps of prechlorination, preozonation, sedimentation, filtration, and postchlorination comparatively. THMs were detected as $52.20{\mu}g/L$ after prechlorination and decreased during sedimentation and filtration process. The HAAs and aldehydes increased more during preozonaiton than prechlorination. However, chlorinated DBPs and aldehydes increased more by postchlorination. Chlorinated DBPs formed by preozonation increased 26% more than the chlorination process. If aldehydes were included in the total DBPs, DBPs increased up to 39% by preozonation. Preozonation could increase the removal efficiency of organic carbon during the coagulation and sedimentation processes. Ozonation might produce aldehydes that are not permitted for drinking water regulations. Also, DBPs were produced by preozonation than by chlorination. These results would bring a need for alternative disinfection studies to decrease DBPs.

서울시 수돗물 배급수 계통에서 소독부산물 분포특성 (Characteristics of Disinfection Byproducts in Tap Water of Seoul)

  • 장현성;이도원;김창모;이인숙;이수원;박 현
    • Korean Chemical Engineering Research
    • /
    • 제44권2호
    • /
    • pp.216-226
    • /
    • 2006
  • 클로로포름(chloroform), 디클로로아세틱에시드(dichloroacetic acid; DCAA), 트리클로로아세틱에시드(trichloroacetic acid; TCAA) 등은 먹는 물의 염소소독 시 발생되는 주요한 소독부산물이다. 이 중 클로로포름과 DCAA는 발암물질로 분류되어 있어 이에 대한 분포특성연구는 서울시의 먹는 물의 안전성을 판단하기 위해 중요하다. 2002~2004년의 3년 동안 배급 수 계통별로 소독부산물을 분석하였다. 이 중 총트리할로메탄(total trihalomethanes; THMs)의 평균 농도가 정수장에서 생산된 물에서는 0.015 mg/L, 직접 각 가정으로 공급되는 직수에서는 0.019 mg/L, 물탱크를 경유해 각 가정으로 공급되는 물탱크 수에서는 0.023 mg/L로 체류시간이 증가함에 따라 그의 농도는 증가하는 것으로 나타났다. 또한, 수온의 영향으로 인해 여름철에 비교적 높은 농도로 검출되었다. THMs 이외의 다른 소독부산물들도 역시 유사한 경향을 나타내었다. 검출된 소독부산물의 양은 환경부 먹는물 수질기준의 1/4~1/6 정도의 낮은 수준이기 때문에 서울시 수돗물은 소독부산물에 있어 항상 안전한 것으로 나타났다.

Change of Molecular Weight of Organic Matters through Unit Water Treatment Process and Associated Chlorination Byproducts Formation

  • Sohn, Jin-Sik;Kang, Hyo-Soon;Han, Ji-Hee;Yoon, Yeo-Min
    • Environmental Engineering Research
    • /
    • 제12권5호
    • /
    • pp.224-230
    • /
    • 2007
  • The objectives of this study were to evaluate the change of molecular weight (MW) profiles in natural organic matter (NOM) through various treatment processes (coagulation, granular activated carbon (GAC), and ozonation) using high performance size exclusion chromatography based on ultraviolet absorbance and dissolved organic detection (HPSEC-UVA-DOC). In addition, relationships between MW profiles and disinfection by-production (DBP) formation were evaluated. Each treatment process results in significant different effects on NOM profiles. Coagulation is effective to remove high molecular weight NOM, while GAC is effective to remove low molecular weight NOM. Ozonation removes only a small portion of NOM, while it induces a significant reduction of UV absorbance due to breakdown of the aromatic groups. All treated waters are chlorinated, and chlorination DBPs such as trihalomethanes (THMs) and haloacetic acids (HAAs) are measured under formation potential conditions. Both THM and HAA formation potentials were significantly reduced through the coagulation process. GAC was more effective to reduce THM formation compared to HAA formation reduction, while ozonation showed significant HAA reduction compared to THM reduction.

고도정수처리를 위한 HCPAC-MBR 공정에서의 소독부산물 저감에 관한 연구 (A Study on Removal of Disinfection By-products in High Concentration Powdered Activated Carbon Membrane Bio-reactor Process for Advanced Water Treatment)

  • 이송희;장성우;서규태
    • 상하수도학회지
    • /
    • 제20권1호
    • /
    • pp.27-34
    • /
    • 2006
  • This study was conducted to evaluate the performance of a membrane bioreactor filled with high concentration of powdered activated carbon (HCPAC-MBR) to reduce DBPs at the drinking water treatment. The pilot system was installed after the rapid sand filtration process whose plant was the conventional treatment process. The removal efficiencies of DBPs were measured during pilot operation period of 2 years. HAA and THM removal rates could be maintained around 80~90% without any troubles and then tremendous reduction of HAA and THM reactivity were observed more than 52%. The average removal rate of HAA formation potential (FP) and THM formation potential (FP) were 70.5% and 67.6% respectively. It is clear that the PAC membrane bioreactor is highly applicable for advanced water treatment to control DBPs.

Handspace Solid Phase Microextraction 방법에 의한 HANs 분석에 관한 연구 (Analysis of Haloacetonitriles in Drinking Water Using Headspace-SPME Technique with GC-MS)

  • 조덕희
    • 상하수도학회지
    • /
    • 제18권5호
    • /
    • pp.628-637
    • /
    • 2004
  • In many drinking water treatment plants, chlorination process is one of the main techniques used for the disinfection of water. This disinfecting treatment leads to the formation of disinfection by-products (DBPs) such as haloacetonitriles (HANs), trihalomethanes (THMs), haloacetic acids (HAAs). In this study, headspace-solid phase microextraction (HS- SPME) technique was applied for the analysis of HANs in drinking water. The effects of experimental parameters such as selection of SPME fiber, the addition of salts, magnetic stirring, extraction temperature, extraction time and desorption time on the analysis were investigated. Analytical parameters such as linearity, repeatability and detection limits were also evaluated. The $50/30{\mu}m$-divinylbenzene/carboxen/polydimethylsiloxane fiber, extraction time of 30 minutes, extraction temperature of $20^{\circ}C$ and desorption time of 1 minute at $260^{\circ}C$ were the optimal experimental conditions for the analysis of HANs. The correlation coefficients ($r^2$) for HANs was 0.9979~0.9991, respectively. The relative standard deviations (%RSD) for HANs was 2.3~7.6%, respectively. Detection limits (LDs) for HANs was $0.01{\sim}0.5{\mu}g/L$, respectively.