• Title/Summary/Keyword: Halo

Search Result 628, Processing Time 0.028 seconds

Comparison of Global Optimization Methods for Insertion Maneuver into Earth-Moon L2 Quasi-Halo Orbit Considering Collision Avoidance

  • Lee, Sang-Cherl;Kim, Hae-Dong;Yang, Do-Chul;Cho, Dong-Hyun;Im, Jeong-Heum;No, Tae-Soo;Kim, Seungkeun;Suk, Jinyoung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.267-280
    • /
    • 2014
  • A spacecraft placed in an Earth-Moon L2 quasi-halo orbit can maintain constant communication between the Earth and the far side of the Moon. This quasi-halo orbit could be used to establish a lunar space station and serve as a gateway to explore the solar system. For a mission in an Earth-Moon L2 quasi-halo orbit, a spacecraft would have to be transferred from the Earth to the vicinity of the Earth-Moon L2 point, then inserted into the Earth-Moon L2 quasi-halo orbit. Unlike the near Earth case, this orbit is essentially very unstable due to mutually perturbing gravitational attractions by the Earth, the Moon and the Sun. In this paper, an insertion maneuver of a spacecraft into an Earth-Moon L2 quasi-halo orbit was investigated using the global optimization algorithm, including simulated annealing, genetic algorithm and pattern search method with collision avoidance taken into consideration. The result shows that the spacecraft can maintain its own position in the Earth-Moon L2 quasi-halo orbit and avoid collisions with threatening objects.

Galactic Warps in Live Triaxial Halos

  • Jeon, Myoung-Won;Kim, Sung-Soo S.;Ann, Hong-Bae
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.30.1-30.1
    • /
    • 2008
  • We investigate the evolution of the initially tilted, self-gravitating disks in a live axisymmetric or triaxial halo. Our study shows how the axisymmetric and triaxiaility of the halo alters the evolution of the warp compared to the spherical case. We attribute the development of warps to the torque between a halo and disk and that between the inner and outer regions of the disk. We discuss if the triaxial halo can be responsible for the formation and maintenance of the warp phenomena even in the presence of dynamical friction between the disk and the halo.

  • PDF

A Weight Map Based on the Local Brightness Method for Adaptive Unsharp Masking (적응형 언샤프 마스킹을 위한 지역적 밝기 기반의 가중치 맵 생성 기법)

  • Hwang, Tae Hun;Kim, Jin Heon
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.821-828
    • /
    • 2018
  • Image Enhancement is used in various applications. Among them, unsharp masking methods can improve the contrast with a simple operation. However, it has problems of noise enhancement and halo effect caused by the use of a single filter. To solve this problems, adaptive processing using multi-scale and bilinear filters is being studied. These methods are effective for improving the halo effect, but it require a lot of calculation time. In this paper, we want to simplify adaptive filtering by generating a weight map based on local brightness. This weight map enables adaptive processing that eliminates the halo effect through a single multiplication operation. Through experiments, we confirmed the suppression of the halo effect through the result image of the proposed algorithm and existing algorithm.

HALO : An Efficient Global Placement Strategy for Standard Cells (HALO : 효율적 표준셀 배치 알고리듬)

  • 양영일;경종민
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.10
    • /
    • pp.1598-1605
    • /
    • 1989
  • This paper describes an efficient global cell (module) placement strategy called HALO (Hierarchical Alternating Linear Ordering)which generates global 2-D placement of circuit modules by hierarchical application of linear ordering in alternating direction. We tried, in principle, to explain why HALO should perform better than other typical, somehat successful, analytical approaches such as min-cut, force-directed relaxation(FDR)or its likes. We have implemented HALO as a program for standard cell placement. Experimental results on two benchmark circuits, primary and primary 2 consisting of 752 and 2907 cells, respectively have shown a decrease of half-perimeter routing length by 7% and 24%, respectively compared to the best available results obtained so far. Total CPU time including the following detailed placement was less than half of the earlier work.

  • PDF

On the physical origins for the two-halo conformity

  • Seo, Seongu;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.74.1-74.1
    • /
    • 2017
  • The two-halo conformity is that if a central galaxy in a dark matter halo is quenched in star formation, the central galaxies in other neighboring halos (within ~ 4 Mpc) even with no causal contact seem conformed to be quenched. The galactic similarity ranging far beyond the virial radius of each dark matter halo cannot be explained by known environmental effects (ram pressure, tidal interaction, etc.). Here, using a cosmological hydrodynamic simulation, we put forward new physical origins for the phenomenon; the back-splash galaxies scenario and the halo assembly bias scenario. We discuss the relative importance of the two explanations on a quantitative basis.

  • PDF

Modeling the Galaxy-Halo Connection for Large-Volume Surveys

  • Lee, SeungHee;Park, Dongjun;Rossi, Graziano
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.53.4-53.4
    • /
    • 2017
  • With large-volume surveys becoming the norm, it is increasingly important to accurately model the galaxy-halo connection and being able to create mock universes of galaxies - starting from dark matter halo catalogs - that reproduce with high-fidelity all the characteristics of a given experiment. This step is necessary, in order to safely interpret cosmological data and fully control systematic effects. We are developing a new Python-based tool which integrates several existing packages and allows one to reproduce many of the forms used to describe galaxy-halo models, ranging from halo occupation distribution (HOD) to abundance matching techniques, along with the characteristics of a given survey and the main testable observables. We are making the code parallel for high-performance parallel-architectures.

  • PDF

Dichotomy of the Galactic Halo as Revealed by Carbon-Enhanced Metal-Poor Giants

  • Jung, Jaehun;Lee, Young Sun;Kim, Young Kwang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.66.3-67
    • /
    • 2018
  • We present distinct chemical and kinematic properties associated with the inner and outer halos of the Milky Way, as identified by metal-poor stars from the Sloan Digital Sky Survey. In particular, using carbon-enhance metal-poor (CEMP) giants, we first map out the fractions of CEMP-no stars (without strongly enhanced neutron-capture elements) and CEMP-s stars (with a large enhancement of s-process elements) in the inner- and outer-halo populations, separated by their spatial distribution of carbonicity ([C/Fe]). The CEMP-no and CEMP-s objects are classified by their different levels of absolute carbon abundances, A(C). We investigate characteristics of rotational velocity and orbital eccentricity for these sub-classes within the halo populations. Distinct kinematic features and fractions between CEMP-no and CEMP-s stars identified in each halo region will provide important clues on the origin of the dichotomy of the Galactic halo.

  • PDF

SUSSING MERGER TREES: THE IMPACT OF HALO MERGER TREES ON GALAXY PROPERTIES IN A SEMI-ANALYTIC MODEL

  • LEE, JAEHYUN;YI, SUKYOUNG
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.473-474
    • /
    • 2015
  • Halo merger trees are the essential backbone of semi-analytic models for galaxy formation and evolution. Srisawat et al. (2013) show that different tree building algorithms can build different halo merger histories from a numerical simulation for structure formation. In order to understand the differences induced by various tree building algorithms, we investigate the impact of halo merger trees on a semi-analytic model. We find that galaxy properties in our models show differences between trees when using a common parameter set. The models independently calibrated for each tree can reduce the discrepancies between global galaxy properties at z=0. Conversely, with regard to the evolutionary features of galaxies, the calibration slightly increases the differences between trees. Therefore, halo merger trees extracted from a common numerical simulation using different, but reliable, algorithms can result in different galaxy properties in the semi-analytic model. Considering the uncertainties in baryonic physics governing galaxy formation and evolution, however, these differences may not necessarily be significant.

THE EVOLUTION OF A SPIRAL GALAXY: THE GALAXY

  • Lee, See-Woo;Park, Byeong-Gon;Kang, Yong-Hee;Ann, Hong-Bae
    • Journal of The Korean Astronomical Society
    • /
    • v.24 no.1
    • /
    • pp.25-53
    • /
    • 1991
  • The evolution of the Galaxy is examined by the halo-disk model, using the time-dependent bimodal IMF and contraints such as cumulative metallicity distribution, differential metallicity distribution and PDMF of main sequence stars. The time scale of the Galactic halo formation is about 3Gyr during which the most of halo stars and metal abundance are formed and ${\sim}95%$ of the initial halo mass falls to the disk. The G-dwarf problem could be explained by the time-dependent bimodal IMF which is suppressed for low mass stars at the early phase (t < 1Gyr) of the disk evolution. However, the importance of this problem is much weakened by the Pagel's differential metallicity distribution which leads to less initial metal enrichment and many long-lived metal-poor stars with Z < $1/3Z_{\odot}$ The observational distribution of abundance ratios of C, N, O elements with respect to [Fe/H] could be reproduced by the halo-disk model, including the contribution of iron product by SNIs of intermediate mass stars. The initial enrichment of elements in the disk could be explained by the halo-disk model, resulting in the slight decrease and then the increase in the slopes of the [N/Fe]- and [C/Fe]-distributions with increasing [Fe/H] in the range of [Fe/H] < -1.

  • PDF