• Title/Summary/Keyword: Half-pixel

Search Result 68, Processing Time 0.026 seconds

Visibility Enhancement of Underwater Stereo Images Using Depth Image (깊이 영상을 이용한 수중 스테레오 영상의 가시성 개선)

  • Shin, Hyoung-Chul;Kim, Sang-Hoon;Sohn, Kwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.17 no.4
    • /
    • pp.684-694
    • /
    • 2012
  • In the underwater environment, light is absorbed and scattered by water and floating particles, which makes the underwater images suffer from color degradation and limited visibility. Physically, the amount of the scattered light transmitted to the image is proportional to the distance between the camera and the object. In this paper, the proposed visibility enhancement. method utilizes depth images to estimate the light transmission and the degradation factor by the scattered light. To recover the scatter-free images without unnatural artifacts, the proposed method normalizes the degradation factor based on the value of each pixel of the image. Finally, the scatter-free images are obtained by removing the scattered components on the image according to the estimated transmission. The proposed method also considers the color discrepancies of underwater stereo images so that the stereo images have the same color appearance after the visibility enhancement. The experimental results show that the proposed method improves the color contrast more than 5% to 14% depending on the experimental images.

The Operational Comparison of SPOT GCP Acquisition and Accuracy Evaluation

  • Kim, Kam-Lae;Kim, Uk-Nam;Chun, Ho-Woun;Lee, Ho-Nam
    • Korean Journal of Geomatics
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • This paper presents an investigation into the operational comparison of SPOT triangulation to build GCP library by analytical plotter and DPW (digital photogrammetric workstation). GCP database derived from current SPOT images can be used to other image sensors of satellite, if any reasons, such as lack of topographic maps or GCPs. But, general formulation of a photogrammetric process for GCP measurement has to take care of the scene interpretation problem. There are two classical methods depending on whether an analytical plotter or DPW is being used. Regardless of the method used, the measurement of GCPs is the weakest point in the automation of photogrammetric orientation procedures. To make an operational comparison, five models of SPOT panchromatic images (level 1A) and negative films (level 1AP) were used. Ten images and film products were used for the five GRS areas. Photogrammetric measurements were carried out in a manual mode on P2 analytical plotter and LH Systems DPW770. We presented an approach for exterior orientation of SPOT images, which was based on the use of approximately eighty national geodetic control points as GCPs which located on the summit of the mountain. Using sixteen well-spaced geodetic control points per model, all segments consistently showed RMS error just below the pixel at the check points in analytical instrument. In the case of DPW, half of the ground controls could not found or distinguished exactly when we displayed the image on the computer monitor. Experiment results showed that the RMS errors with DPW test was fluctuated case by case. And the magnitudes of the errors were reached more than three pixels due to the lack of image interpretation capability. It showed that the geodetic control points is not suitable as the ground control points in DPW for modeling the SPOT image.

  • PDF

Investigation of Scatter and Septal Penetration in I-131 Imaging Using GATE Simulation (GATE 시뮬레이션을 이용한 I-131 영상의 산란 및 격벽통과 보정방법 연구)

  • Jung, Ji-Young;Kim, Hee-Joung;Yu, A-Ram;Cho, Hyo-Min;Lee, Chang-Lae;Park, Hye-Suk
    • Progress in Medical Physics
    • /
    • v.20 no.2
    • /
    • pp.72-79
    • /
    • 2009
  • Scatter correction for I-131 plays a very important role to improve image quality and quantitation. I-131 has multiple and higher energy gamma-ray emissions. Image quality and quantitative accuracy in I-131 imaging are degraded by object scatter as well as scatter and septal penetration in the collimator. The purpose of this study was to estimate scatter and septal penetration and investigate two scatter correction methods using Monte Carlo simulation. The gamma camera system simulated in this study was a FORTE system (Phillips, Nederland) with high energy, general-purpose, parallel hole collimator. We simulated for two types of high energy collimators. One is composed of lead, and the other is composed of artificially high Z number and high density. We simulated energy spectrum using a point source in air. We estimated both full width at half maximum (FWHM) and full width at tenth maximum (FWTM) using line spread function (LSF) in cylindrical water phantom. We applied two scatter correction methods, triple energy window scatter correction (TEW) and extended triple energy window scatter correction (ETEW). The TEW method is a pixel-by pixel based correction which is easy to implement clinically. The ETEW is a modification of the TEW which corrects for scatter by using abutted scatter rejection window, which can overestimate or the underestimate scatter. The both FWHM and FWTM were estimated as 41.2 mm and 206.5 mm for lead collimator, respectively. The FWHM and FWTM were estimated as 27.3 mm and 45.6 mm for artificially high Z and high density collimator, respectively. ETEW showed that the estimation of scatter components was close to the true scatter components. In conclusion, correction for septal penetration and scatter is important to improve image quality and quantitative accuracy in I-131 imaging. The ETEW method in scatter correction appeared to be useful in I-131 imaging.

  • PDF

Is Skeletonized Internal Mammary Artery Harvesting better than Pedicled Harvesting in Respect of the Sternal Blood Flow\ulcorner: An Estimation Using Bone Scan (내유동맥의 골격화 채취는 흉골로의 혈류 감소 측면에서 과연 유리한가 \ulcorner: 골주사를 이용한 평가)

  • 손국희;김영삼;김정택;윤용한;김광호;최원식;백완기
    • Journal of Chest Surgery
    • /
    • v.37 no.6
    • /
    • pp.511-516
    • /
    • 2004
  • Background: One of the theoretical advantages of skeletonized internal mammary artery harvesting in coronary artery bypass surgery is to minimize the interruption of the sternal blood flow inevitably accompanied by internal mammary harvesting. A study using bone scan is designed to determine the effects of internal mammary artery harvesting technique on the sternal blood flow. Material and Method: From April 2002 to March 2003, 27 patients out of 48 patients who underwent the isolated coronary bypass surgery were enrolled into the study. The enrolled patients underwent bone scan in the preoperative period and postoperative period respectively. Bilateral internal mammary artery was used in 8 patients (BIMA group) and single left internal mammary artery in 19 patients (LIMA group). The patients in LIMA group were divided into two groups: LlMA_skel group, in whom left internal mammary artery was harvested in skeletonized fashion (n=12), and LlMA_ped group, in whom left internal mammary artery was harvested in pedicled fashion (n=7). After the bone scan, the region of interest (ROI) was created on the left of the sternum and the mirror image with the same pixel numbers was placed on the right half of the sternum. The mean counts per pixel on the left side of the sternum was compared with those on the right side and expressed as left to right ratio (L/R ratio). Result: In LIMA group, the L/R ratio decreased from 94.6$\pm$4.1% to 87.9$\pm$6.9% (p=0.003) after the operation as compared to BIMA group, in which no change of the L/R ratio was observed. The changed of the L/R ratio in LlMA_skel group and LlMA_ped group were from 95.3$\pm$4.2% to 88.3$\pm$7.7% and from 93.4$\pm$3.9% to 87.4$\pm$5.8% respectively. The % changes in L/R ratio were -7.44 $\pm$7.08 in LIMA_skel group and -6.17$\pm$9.08 in LiMA_ped group, which did not reach the statistical difference. Conclusion: Ipsilateral sternal blood flow is interrupted by internal mammary artery harvesting as evidenced by the decrease in L/R ratio after left internal mammary artery harvesting irrespective of the harvesting techniques. Skeletonized harvesting did not show superiority in respect to sternal blood flow as compared to pedicled harvesting.

Comparison Study of the Modulation Transfer Function of a Prototype a-Se based Flat Panel Detector with Conventional Speed Class 400 Film/screen System (비정질 셀레늄을 이용한 직접방식의 디지털 방사선 검출기와 X-ray film과의 MTF측정을 통한 영상 질(quality) 비교평가에 관한 연구)

  • Park, Jang-Yong;Park, Ji-Koon;Kang, Sang-Sik;Moon, Chi-Woong;Lee, Hyung-Won;Nam, Sang-Hee
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.3
    • /
    • pp.163-171
    • /
    • 2003
  • To evaluate the performance of the digital radiography(DR) system developed in our group, the modulation transfer function(MTF) was measured and compared with that of an analog X- ray detector, film/screen system. The DR system has an amorphous selenium(a-Se) layer vacuum-evaporated on a TFT flat panel detector. The speed class 400 film/screen (Fuji) system has been being used in the clinical field as analog X-ray detectors. Both the square wave and slit method were used to evaluate their MTF. The square method was applied to both film/screen and the DR system. The slit method, however, was applied to only DR system. The full-width half maximum resolution of film/screen was 357${\mu}{\textrm}{m}$(1.4 lp/mm at 50% spatial frequency), and the resolution of DR was limited to 200${\mu}{\textrm}{m}$(2.5 lp/mm at 30%). These results indicate the measured resolution limitations approximate to the pixel pitch, 139 ${\mu}{\textrm}{m}$ of TFT. The MTF of DR is higher than that of film/screen by the factor of 1.785. It is proved that our a-Se based DR system has potential usefulness in the clinical field.

Changes in Spatial Resolution at Position of the Detector in Digital Mammography System (디지털 엑스선유방촬영장치에서 검출기 위치에 따른 공간분해능의 변화)

  • Kim, Hye-Min;Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.3
    • /
    • pp.215-222
    • /
    • 2016
  • X-ray mammography is the most effective method for the diagnosis of calcified lesions of various breast diseases. To reduce patient dose and to obtain optimal image required for diagnosis, the performance of the mammography system should be maintained continuously. Because the target (anode) angle of the X-ray tube is measured from the central X-ray, the effective angle can be slightly different in view of the position on the detector, which can result in degrading spatial resolution of the imaging within the field of view. In this study, we measured the MTF to examine spatial resolution for positions on the detector in the digital mammography system. For a tungsten wire of $50{\mu}m$ diameter, the highest spatial frequency was obtained. It meant that a wire diameter for measuring MTF through LSF should be small compared to the pixel size of the detector used in the mammography system. The spatial resolution showed slightly different performance according to positions on the detector. The center position gave the best spatial resolution and positions away from the center showed the degraded performance although the difference of the spatial resolution was small. The effective focal spot size of the full width at half maximum also showed similar result. It concluded that the slightly increase of the effective focal spot size gave the degradation of the spatial resolution for positions on the detector.

A Study of the Scene-based NUC Using Image-patch Homogeneity for an Airborne Focal-plane-array IR Camera (영상 패치 균질도를 이용한 항공 탑재 초점면배열 중적외선 카메라 영상 기반 불균일 보정 기법 연구)

  • Kang, Myung-Ho;Yoon, Eun-Suk;Park, Ka-Young;Koh, Yeong Jun
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.4
    • /
    • pp.146-158
    • /
    • 2022
  • The detector of a focal-plane-array mid-wave infrared (MWIR) camera has different response characteristics for each detector pixel, resulting in nonuniformity between detector pixels. In addition, image nonuniformity occurs due to heat generation inside the camera during operation. To solve this problem, in the process of camera manufacturing it is common to use a gain-and-offset table generated from a blackbody to correct the difference between detector pixels. One method of correcting nonuniformity due to internal heat generation during the operation of the camera generates a new offset value based on input frame images. This paper proposes a technique for dividing an input image into block image patches and generating offset values using only homogeneous patches, to correct the nonuniformity that occurs during camera operation. The proposed technique may not only generate a nonuniformity-correction offset that can prevent motion marks due to camera-gaze movement of the acquired image, but may also improve nonuniformity-correction performance with a small number of input images. Experimental results show that distortion such as flow marks does not occur, and good correction performance can be confirmed even with half the number of input images or fewer, compared to the traditional method.

Impact of Photon-Counting Detector Computed Tomography on Image Quality and Radiation Dose in Patients With Multiple Myeloma

  • Alexander Rau;Jakob Neubauer;Laetitia Taleb;Thomas Stein;Till Schuermann;Stephan Rau;Sebastian Faby;Sina Wenger;Monika Engelhardt;Fabian Bamberg;Jakob Weiss
    • Korean Journal of Radiology
    • /
    • v.24 no.10
    • /
    • pp.1006-1016
    • /
    • 2023
  • Objective: Computed tomography (CT) is an established method for the diagnosis, staging, and treatment of multiple myeloma. Here, we investigated the potential of photon-counting detector computed tomography (PCD-CT) in terms of image quality, diagnostic confidence, and radiation dose compared with energy-integrating detector CT (EID-CT). Materials and Methods: In this prospective study, patients with known multiple myeloma underwent clinically indicated whole-body PCD-CT. The image quality of PCD-CT was assessed qualitatively by three independent radiologists for overall image quality, edge sharpness, image noise, lesion conspicuity, and diagnostic confidence using a 5-point Likert scale (5 = excellent), and quantitatively for signal homogeneity using the coefficient of variation (CV) of Hounsfield Units (HU) values and modulation transfer function (MTF) via the full width at half maximum (FWHM) in the frequency space. The results were compared with those of the current clinical standard EID-CT protocols as controls. Additionally, the radiation dose (CTDIvol) was determined. Results: We enrolled 35 patients with multiple myeloma (mean age 69.8 ± 9.1 years; 18 [51%] males). Qualitative image analysis revealed superior scores (median [interquartile range]) for PCD-CT regarding overall image quality (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), edge sharpness (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), image noise (4.0 [4.0-4.0] vs. 3.0 [3.0-4.0]), lesion conspicuity (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), and diagnostic confidence (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]) compared with EID-CT (P ≤ 0.004). In quantitative image analyses, PCD-CT compared with EID-CT revealed a substantially lower FWHM (2.89 vs. 25.68 cy/pixel) and a significantly more homogeneous signal (mean CV ± standard deviation [SD], 0.99 ± 0.65 vs. 1.66 ± 0.5; P < 0.001) at a significantly lower radiation dose (mean CTDIvol ± SD, 3.33 ± 0.82 vs. 7.19 ± 3.57 mGy; P < 0.001). Conclusion: Whole-body PCD-CT provides significantly higher subjective and objective image quality at significantly reduced radiation doses than the current clinical standard EID-CT protocols, along with readily available multi-spectral data, facilitating the potential for further advanced post-processing.