• Title/Summary/Keyword: Half precast concrete

Search Result 41, Processing Time 0.028 seconds

An Experimental Study on Structural Behavior of Half Slab Reinforced by Truss Mesh (트러서메쉬 보강 하프 슬래브의 구조적 거동에 관한 실험적 연구)

  • Ko, Man-Young;Kim, Yong-Boo;Park, Hyun-Soo;Chung, Lan
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.4
    • /
    • pp.119-128
    • /
    • 1995
  • This paper summarizes experimental results for studying feasibility and structural behavior of' a half slab which is getting popularity in recent building construction in favour of the savings in manpower, coats, and construction period. 17 specimens were tested to investigate and analyze the flexural strength of precast concrete slab, half slab, and half slab-wall joint. The primary variables of the testing program were: thickness of precast concrete slab, truss mesh shape, and type of loadings. Test results show that the flexural strength of precast concrete slab in reverse loading is lower than the design strength, but the flexural strength of precast concrete slab, half slab and half slab-wall joint in direct loading is higher than the design srength. No horizontal cracks were found in the connection between insitu concrete and precast concrete slab. The flexural strength of half slab and half slab-wall joint was the same as that of reinforced concrete members. This study concludes that there will not be any structural problem in using a half slab reinforced by truss mesh if props spacing of 2.0m-2.5m, cleanness, and rough finishing between precast concrete and insitu concrete slab are kept.

Flexural Strength Estimation of Half-Depth Precast Concrete Composite Slab Manufactured by the Long-Line Method (롱라인 공법으로 제작한 반단면 프리캐스트 콘크리트 합성 슬래브의 휨강도 평가)

  • Choi, Jin-Woo;Seo, Su-Hong;Joo, Hyung-Joong;Yoon, Soon-Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.48-56
    • /
    • 2013
  • Prestressed concrete (PSC) members are readly available in civil engineering applications due to the convenience of construction and easy of quality control in the manufacturing process of the member. Especially, half-depth precast concrete composite slab, which is one of the PSC flexural members is developed recently using the long-line method. The half-depth precast concrete composite slabs are composed of the precast concrete and the in-situ concrete placed at the site. In this paper, we present the results of experimental investigations pertaining to the pretensioning efficiency and the flexural behavior of half-depth precast concrete composite slab which is made of precast PSC manufactured by the long-line method. In the long-line method, the pretensioned precast member is manufactured simultaneously, by tensioning tendons at once. In addition, we suggest the equation that can estimate the flexural strength of half-depth precast concrete composite slab reasonably by considering the effects of rebar embedded in the precast PSC flexural member.

The Flexural Behavior including Ductility of Half Precast Concrete Slab with Welded Deformed Wire Fabric (용접철망을 사용한 반두께 P.C.슬래브의 휨 및 연성거동)

  • 이광수;최종수;조민형;신성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.4
    • /
    • pp.153-160
    • /
    • 1994
  • Ten Half precast concrete slabs reinforced with welded deformed wire fabric were tested under two concentrated loads to investigate the flexural moment and ductile capacity. The test variables were the compressive strength of topping concrete, quantitative roughness, and reinforcernent ratio. The effects of each test variables were studied separately. Test results were as followings. The ultimate strength design method is applicable to predict flexural strength for Half P.C. concrete slab with welded deformed wire fabric and quantitative roughness. It is proper to consider 0.0035 strain ;is yielding stress of the welded deformed wire fabric. The ductility index of Half precast concrete slab with welded deformed wire fabric showed lower value. Therefore to enhance the ductility capacity the normal defomed bar should be used with the welded deformed wire fabric for the longitudinal reinforcement.

Study on Safety Evaluation of the Half-Depth Precast Deck with RC Rib Pannel for the Flexural Behavior (리브 형상을 갖는 반단면 프리캐스트 판넬의 휨 안전성 평가 연구)

  • Hwang, Hoon Hee
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.4
    • /
    • pp.76-84
    • /
    • 2019
  • The precast pannels are used as formwork in Half-depth precast deck systems. Therefore, it has many advantages, including safe and convenient construction and reduced construction period compared to cast-in-place construction method. In half-depth precast deck systems, the bonding of precast pannels to cast-in place concrete is very important. To enhance the performance of half-depth precast deck system, it is necessary to improve the composite efficiency of the interface or increase the stiffness of the precast pannel to reduce deformation or stress on the interface. In this study, a flexural test of half-depth precast deck system was performed, in which the shear connecting reinforcement was applied to increase the bonding performance at the interface, and the rib shape precast panels were applied to improve stiffness. In addition, the safety and serviceability of these systems were evaluated. Test results show that all of specimens have the required flexural strength under the ultimate strength limit design. It was also evaluated to have sufficient safety for the serviceability of deflection and crack under the serviceability limit design.

Behavior Evaluation of Half Slabs with Ribs to Extend Residence Area of RC Buildings (RC구조물의 평면확장을 위한 리브형 하프슬래브의 거동 평가)

  • Sim, Kyu-Kwan;Kim, Sang-Sik;Lee, Jung-Yoon;Choi, Kwang-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.242-245
    • /
    • 2006
  • In this research, a precast concrete slab with two ribs was developed to increase the stiffness of slab. The developed precast slabs are allowed to cast concrete for multi stories and to construct concrete slabs without any props. Seven concrete slabs were tested to investigate the behavior of the developed precast slabs. Test results indicated that the developed slabs showed a similar behavior with the slabs without ribs.

  • PDF

Evaluation of Stiffness Structure and Grouting Efficiency beneath the Precast Slab Track by Elastic Wave Tests (탄성파시험에 의한 프리캐스트 슬래브궤도의 강성구조와 충전성능 평가)

  • Lee, Il-Wha;Joh, Sung-Ho;Jang, Seung-Yup;Kang, Youn-Suk;Han, Sung-Woo
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1303-1308
    • /
    • 2007
  • Recently, precast concrete tracks are replacing ballast track for efficient and economic maintenance of track. Precast concrete railroad tracks are manufactured in factory, and transported to railroad construction site for installation. Therefore, quality of precast concrete track itself should be sufficiently good. On the contrary to the convenient manufacturing of precast concrete track, the installation of a precast concrete track requires careful steps. Typically, a precast concrete track is placed on an approximately 15-cm thick lean concrete layer. A mortar is filled between lean concrete layer and precast concrete track to adjust the sloping angle of a precast concrete track for a safe train operation at a curvy section. Then, the use of filled mortarproduces a void underneath a precast concrete track, which is harmful to structural safety of a precast concrete track undercyclic loading. Therefore, it is essential to make sure that there is no void left beneath a precast concrete track after mortar filling. In the continuous resonance method, the amplitude of frequency response measured using an instrumented hammer and an accelerometer is plotted against a pseudo-depth, which is half of the wave velocity divided by frequency. The frequency response functions are measured at consecutive measurement locations, 6-cm interval between measurement points, and then combined together to generate a 2-D plot of frequency response. The sections with strong reflections or large amplitude of frequency response are suspicious areas with internal voids and unfilled areas. The 2-D frequency response plot was efficient in locating problematic sections just by examining the color shade of a visualized plot in 2-D format. Some of the problematic sections were drilled to make a visual inspection of mortar filling. The visual image of interface between mortar and precast concrete track was verified using the validity of the continuous resonance technique adopted in this research.

  • PDF

An Experimental Study on Bending Performance of Half Precast Concrete Slab with Truss-Reinforcement (트러스 철근을 갖는 하프 프리캐스트 슬래브의 휨 내력에 관한 실험적 연구)

  • Seo, Tae-Seok;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.71-80
    • /
    • 2008
  • A slab examined by this study is the half precast concrete(PC) slab with the truss-reinforcement. There are many studies on the composite slab, but the study on the half precast concrete(PC) slab is little. Especially, the study on a structural performance of the half PC slab according to the height of the truss-reinforcement is extremely little. Therefore, in this research, three kinds of slabs with different height of the truss-reinforcement were made, and the bending test was conducted to research a structural performance.

Effect of Different Interfacial Shear Reinforcement Lengths and Types on Flexural Behavior of PC/PS-Half Slab (계면 전단 보강근 길이 및 형태 변화에 따른 PC/PS-Half Slab의 휨 거동)

  • 이차돈;이종민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.131-138
    • /
    • 2001
  • Total number of seven experimental specimens of size 4.6m$\times$2.4m are designed in full scale with due considerations given to the constructability as well as economic applications. Each specimen is made with different shapes of trusses or hooks along the interfacial surface between precast panel and topping concrete to maintain appropriate shear resistance. Structural performances in terms of strength and ductility under flexural load are examined for each specimen with different types of interfacial shear resistance reinforcements. Experimentally obtained flexural strength are also compared with those of analytical predictions. Based on experimental and analytical studies, design equations are suggested for the developed precast prestressed concrete half-slab systems.

  • PDF

Experimental Cyclic Behavior of Precast Hybrid Beam-Column Connections with Welded Components

  • Girgin, Sadik Can;Misir, Ibrahim Serkan;Kahraman, Serap
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.229-245
    • /
    • 2017
  • Post-earthquake observations revealed that seismic performance of beam-column connections in precast concrete structures affect the overall response extensively. Seismic design of precast reinforced concrete structures requires improved beam-column connections to transfer reversed load effects between structural elements. In Turkey, hybrid beam-column connections with welded components have been applied extensively in precast concrete industry for decades. Beam bottom longitudinal rebars are welded to beam end plates while top longitudinal rebars are placed to designated gaps in joint panels before casting of topping concrete in this type of connections. The paper presents the major findings of an experimental test programme including one monolithic and five precast hybrid half scale specimens representing interior beam-column connections of a moment frame of high ductility level. The required welding area between beam bottom longitudinal rebars and beam-end plates were calculated based on welding coefficients considered as a test parameter. It is observed that the maximum strain developed in the beam bottom flexural reinforcement plays an important role in the overall behavior of the connections. Two additional specimens which include unbonded lengths on the longitudinal rebars to reduce that strain demands were also tested. Strength, stiffness and energy dissipation characteristics of test specimens were investigated with respect to test variables. Seismic performances of test specimens were evaluated by obtaining damage indices.

Evaluation of Fire Performance of RC Slabs with Half-Depth Precast Panels (반단면 프리캐스트 패널을 적용한 RC 슬래브의 내화성능 평가)

  • Chung, Chul-Hun;Im, Cho-Rong;Kim, Hyun-Jun;Joo, Sang-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4A
    • /
    • pp.391-398
    • /
    • 2010
  • The fire performance of RC slabs with half-depth precast panel after exposure to the ISO-834 fire standard without loading has been experimentally investigated. During heating, according to the ISO 834 fire curve, concrete spalling was observed for concrete without PP(polypropylene) fibers. No spalling occurred when heating concrete containing PP fibers. The maximum temperature of RC slabs with PP fibers with half-depth precast panel was lower than that of concrete without PP fibers. The ultimate load after cooling of the RC slabs that were not loaded during the furnace tests was evaluated by means of 3 points bending tests. The ultimate load of the RC slabs without PP fibers showed a considerable reduction (around 32.5%) of the ultimate load after cooling if compared with of RC slabs with PP fibers. The ultimate load of the RC slabs with half-depth precast panel with PP fibers is higher than that of a full-depth RC slabs with PP fibers. Also, the addition of PP fibers and the use of half-depth precast panel improve fire resistance.