• Title/Summary/Keyword: Haldane inhibition

Search Result 7, Processing Time 0.025 seconds

Haldane Inhibition at CAH DNAPL Source Zone in Soil and Groundwater

  • Yu, Seung-Ho;Semprini, Lewis
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.33-36
    • /
    • 2004
  • Two biokinetic models (\circled1 Mrichaelis-Menten kinetics with competitive inhibition \circled2 with both competitive inhibition and Haldane inhibition) for reductive dechlorination were developed and compared with results from batch kinetic tests conducted over a wide range of PCE and TCE concentrations with two different dechlorinating cultures. At PCE concentrations lower than 300 $\mu$M, both model simulated the experimental results well. However, The kinetic model that incorporated both competitive and Haldane inhibitions much better simulated experimental data for PCE concentrations greater than 300-400 $\mu$M, and TCE concentrations at half its solubility limit (4000 $\mu$M). The PM culture showed Haldane inhibition constants of 900, 6000, 7000 $\mu$M for TCE, c-DCE and VC, indicating very weak Haldane inhibition for c-DCE and VC, while the EV culture had lower Haldane inhibition constants for TCE, c-DCE, and VC of 900, 750, and 750 $\mu$M, respectively. The BM culture had better transformation abilities than the individual cultures over a wide range of PCE and TCE concentrations. Modeling results indicated that a combination of competitive and Haldane inhibition kinetics is required to simulate dechlorination over a broad range of concentrations up to the solubility limits of PCE and TCE.

  • PDF

Theoretical Consideration of the Modified Haldane Model of the Substrate Inhibition in the Microbial Growth Processes (미생물 성장 공정에서의 기질 저해에 관한 modified Haldane 모델의 이론적 고찰)

  • Hwang, Young-Bo
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.277-286
    • /
    • 2008
  • This paper deals with the theoretical derivation of the modified Haldane model of the substrate inhibition in the microbial growth processes. Based on the biological concepts of substrate-receptor complex working mechanisms, a new microbial kinetics of N-fold multiplex substrate inhibition and its generalization has been considered theoretically, which is natural expansion of the simple substrate inhibition mechanism in the enzyme reaction. As a result, the modified Haldane model of the substrate inhibition turns out to be a well-designed four-parameter kinetic model with a biological constant of the total substrate inhibition concentration.

Characterization of BTX-degrading bacteria and identification of substrate interactions during their degradation

  • Oh, Young-Sook;Choi, Sung-Chan
    • Journal of Microbiology
    • /
    • v.35 no.3
    • /
    • pp.193-199
    • /
    • 1997
  • From several industrial wastewaters, 14 bacterial strains which degrade benzene, toluene, o-xylene, m-xylene, or p-xylene (BTX) were obtained. These strains were characterized as to their species composition and the substrate range, kinetic parameters and the substrate interactions were investigated. Although BTX components have a similar chemical structure, isolated strains showed different substrate ranges and kinetic parameters. None of the strains could degrade all of BTX components and most of them showed an inhibition (Haldane) kinetics on BTX, BTX mixtures were removed under inhibitory substrate interactions with variation in the intensity of inhibition. For a complete degradation of BTX, a defined mixed culture containing three different types of patyways was constructed and all of the BTX components were simultaneously degraded with the totla removal rate of 225.69 mg/g biomass/h Judging from the results, the obtained mixed culture seems to be useful for the treatment of BTX-contaminated wastewater or groundwater as well as for the removal of BTX from the contaminated air stream.

  • PDF

Kinetic Mechanism in the Absence of Metal of Hafnia alvei Aspartase in the Amination Direction

  • Ra, Im Jeong;Kim, Hyo Jun;Yun, Mun Yeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.3
    • /
    • pp.288-292
    • /
    • 2001
  • The kinetic mechanism of Hafnia alvei aspartase in the amination direction has been determined in the absence of metal. The initial velocity pattern obtained by varying the concentration of fumarate at several fixed concentrations of NH4+ , shows an intersection on the left of the ordinate at pH 7.0, indicating that the kinetic mechanism is a sequential mechanism in which substrate inhibition by fumarate is observed. The dead-end inhibition pattern by varying the concentration of NH4+ at several fixed concentration of succinate shows an intersection on the left of the ordinate. These data are consistent with random addition of NH4+, or fumarate. The Haldane relationship gives a Keq of 1.18 ${\times}$10-3 M at pH 7.0, which is in agreement with the values obtained from the direct determination of reaction concentrations at equilibrium (6.0 $\pm0.2$ ${\times}$10-3 M).

Biodegradation Kinetics of Diesel in a Wind-driven Bioventing System

  • Liu, Min-Hsin;Tsai, Cyuan-Fu;Chen, Bo-Yan
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.5
    • /
    • pp.8-15
    • /
    • 2016
  • Bioremediation, which uses microbes to degrade most organic pollutants in soil and groundwater, can be used in solving environmental issues in various polluted sites. In this research, a wind-driven bioventing system is built to degrade about 20,000 mg/kg of high concentration diesel pollutants in soil-pollution mode. The wind-driven bioventing test was proceeded by the bioaugmentation method, and the indigenous microbes used were Bacillus cereus, Achromobacter xylosoxidans, and Pseudomonas putida. The phenomenon of two-stage diesel degradation of different rates was noted in the test. In order to interpret the results of the mode test, three microbes were used to degrade diesel pollutants of same high concentration in separated aerated batch-mixing vessels. The data derived thereof was input into the Haldane equation and calculated by non-linear regression analysis and trial-and-error methods to establish the kinetic parameters of these three microbes in bioventing diesel degradation. The results show that in the derivation of μm (maximum specific growth rate) in biodegradation kinetics parameters, Ks (half-saturation constant) for diesel substance affinity, and Ki (inhibition coefficient) for the adaptability of high concentration diesel degradation. The Ks is the lowest in the trend of the first stage degradation of Bacillus cereus in a high diesel concentration, whereas Ki is the highest, denoting that Bacillus cereus has the best adaptability in a high diesel concentration and is the most efficient in diesel substance affinity. All three microbes have a degradation rate of over 50% with regards to Pristane and Phytane, which are branched alkanes and the most important biological markers.

Potency of Botryococcus braunii cultivated on palm oil mill effluent wastewater as a source of biofuel

  • Azimatun Nur, Muhamad Maulana;Setyoningrum, Tutik Muji;Budiaman, I Gusti Suinarcana
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.417-425
    • /
    • 2017
  • Indonesia is known as the largest oil palm producer in the world. However, along with the production, it generates wastes and pollution that caused the environmental problem in surrounding areas. Previous researchers reported that the high palm oil mill effluent (POME) concentration inhibited microalgae growth. However, the inhibition factor was not clearly explained by using kinetic model. This study presents kinetic models of Botryococcus braunii (B. braunii) cultivated on POME wastewater under different turbidity condition. Results showed that the growth model of Zwietering was closely suitable with experimental results. It was found that B. braunii was able to consume organic carbon from the POME wastewater on the logarithmic model. A modified kinetic model of Monod Haldane described the influence of turbidity and chemical oxygen demand on the cultivation. Turbidity of POME medium inhibited the growth rate at KI 3.578 and KII 179.472 NTU, respectively. The Lipid (39.9%), and carbohydrate (41.03%) were found in the biomass that could be utilized as biofuel source.

Effect of seeding ratio on acidogenic biokinetics in high ammonia concentration

  • Yang, Keun-Young;Shin, Seung-Gu;Hwang, Seok-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.65-66
    • /
    • 2005
  • Anaerobic digestion is one of the well-known methods for biological treatment handling of concentrated organic matter such as swine $wastewater.^{1)} The anaerobic digestion can reduce organic loading but also hydrolyze non-biodegradable organic $matter.^{2)}$ The feces from the scrapper-type barn are usually collected to make compost and the urine is discarded with swine-slurry wastewater by ocean-dumping or treated by biological methods. The lagoon, aerobic digestion, anaerobic digestion, SBR, $A^{2}/O$, and UCT have been applied for treating swine $wastewater.^{3)} In this study, as a result of the analysis of swine wastewater, the total and soluble chemical oxygen demand was 130g/L and 60g/L, respectively. And the volatile fatty acid as chemical oxygen demand equivalent was 45g/L, which was 75% of soluble chemical oxygen demand. Before everything else, ammonia nitrogen concentration was 6.5 g/L. From biochemical acidogenic potential test, it was concluded that the enhanced acidification process to manage swine waste should be operated in the ammonia nitrogen concentration of less than 1.2 g/L. In the result of seeding ratio experiments with artificial $wastewater^{4)}, the lag period of acidogens was taken the long time because of the inhibition by the $ammonia^{5)}$, however no difference of period by the seeding ratio was not shown. The Haldane-based biokinetics were also evaluated using a method of fourth order Runge-Kutta $approximation.^{6,7)}$ The nonlinear least squares (NLLS) method with a 95% confidence interval was also used. The ranges of maximum microbial growth rate, ${/mu_{max}}$, and half saturation coefficient, $K_{s}$, for acidogenesis of various seeding ratio with artificial wastewater were 6.1 ~ 12.6 $d^{-1}$ and 45,000 ~ 53,500 mg glucose/L, respectively. Also, the methanogenic microbial yield coefficient, Y, and microbial decay rate coefficient, $k_{d}$, and inhibition substrate concentration, $K_{si}$, for the reactors were determined to be 0.32 ~ 0.465 ${/mu}g$/mg glucose; 0.42 ~ 1.01 $d^{-1}$ and 51,500 ~ 55,600 mg glucose/L, respectively.

  • PDF