• 제목/요약/키워드: Hahn class orthogonal polynomials

검색결과 2건 처리시간 0.022초

On $\delta$ -semiclassical orthogonal polynomials

  • K. H. Kwon;Lee, D. W.;Park, S. B.
    • 대한수학회보
    • /
    • 제34권1호
    • /
    • pp.63-79
    • /
    • 1997
  • Consider an oparator equation of the form : $$ (1.1) H[y](x) = \alpha(x)\delta^2 y(x) + \beta(x)\delta y(x) = \lambda_n y(x), $$ where $\alphs(x)$ and $\beta(x)$ are polynomials of degree at most two and one respectively, $\lambda_n$ is the eigenvalue parameter, and $\delta$ is Hahn's operator $$ (1.2) \delta f(x) = \frac{(q - 1)x + \omega}{f(qx + \omega) - f(x)}, $$ for real constants $q(\neq \pm 1)$ and $\omega$.

  • PDF

A non-standard class of sobolev orthogonal polynomials

  • Han, S.S.;Jung, I.H.;Kwon, K.H.;Lee, J.K..
    • 대한수학회논문집
    • /
    • 제12권4호
    • /
    • pp.935-950
    • /
    • 1997
  • When $\tau$ is a quasi-definite moment functional on P, the vector space of all real polynomials, we consider a symmetric bilinear form $\phi(\cdot,\cdot)$ on $P \times P$ defined by $$ \phi(p,q) = \lambad p(a)q(a) + \mu p(b)q(b) + <\tau,p'q'>, $$ where $\lambda,\mu,a$, and b are real numbers. We first find a necessary and sufficient condition for $\phi(\cdot,\cdot)$ and show that such orthogonal polynomials satisfy a fifth order differential equation with polynomial coefficients.

  • PDF