• Title/Summary/Keyword: Hadoop-Spark platform

Search Result 17, Processing Time 0.017 seconds

Safety Autonomous Platform Design with Ensemble AI Models (앙상블 인공지능 모델을 활용한 안전 관리 자율운영 플랫폼 설계)

  • Dongyeop Lee;Daesik Lim;Soojeong Woo;Youngho Moon;Minjeong Kim;Joonwon Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.159-162
    • /
    • 2024
  • This paper proposes a novel safety autonomous platform (SAP) architecture that can automatically and precisely manage on-site safety through ensemble artificial intelligence models generated from video information, worker's biometric information, and the safety rule to estimate the risk index. We practically designed the proposed SAP architecture by the Hadoop ecosystem with Kafka/NiFi, Spark/Hive, Hue, ELK (Elasticsearch, Logstash, Kibana), Ansible, etc., and confirmed that it worked well with safety mobility gateways for providing various safety applications.

Design and Implementation of a Search Engine based on Apache Spark (아파치 스파크 기반 검색엔진의 설계 및 구현)

  • Park, Ki-Sung;Choi, Jae-Hyun;Kim, Jong-Bae;Park, Jae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.17-28
    • /
    • 2017
  • Recently, a study on data has been actively conducted because the value of the data has become more useful. Web crawler that is program of data collection recently spotlighted because it can take advantage of the various fields. Web crawler can be defined as a tool to analyze the web pages and collects the URL by traversing the web server in an automated manner. For the treatment of Big-data, distributed Web crawler is widely used which is based on the Hadoop MapReduce. But, it is difficult to use and has constraints on the performance. Apache spark that is the In-memory computing platform is an alternative to MapReduce. The search engine which is one of the main purposes of web crawler displays the information you search by keyword gathered by web crawler. If search engines implement a spark-based web crawler instead of traditional MapReduce-based web crawler, it would be a more rapid data collection.

Management Architecture With Multi-modal Ensemble AI Models for Worker Safety

  • Dongyeop Lee;Daesik, Lim;Jongseok Park;Soojeong Woo;Youngho Moon;Aesol Jung
    • Safety and Health at Work
    • /
    • v.15 no.3
    • /
    • pp.373-378
    • /
    • 2024
  • Introduction: Following the Republic of Korea electric power industry site-specific safety management system, this paper proposes a novel safety autonomous platform (SAP) architecture that can automatically and precisely manage on-site safety through ensemble artificial intelligence (AI) models. The ensemble AI model was generated from video information and worker's biometric information as learning data and the estimation results of this model are based on standard operating procedures of the workplace and safety rules. Methods: The ensemble AI model is designed and implemented by the Hadoop ecosystem with Kafka/NiFi, Spark/Hive, HUE, and ELK (Elasticsearch, Logstash, Kibana). Results: The functional evaluation shows that the main function of this SAP architecture was operated successfully. Discussion: The proposed model is confirmed to work well with safety mobility gateways to provide some safety applications.

Development of Big Data and AutoML Platforms for Smart Plants (스마트 플랜트를 위한 빅데이터 및 AutoML 플랫폼 개발)

  • Jin-Young Kang;Byeong-Seok Jeong
    • The Journal of Bigdata
    • /
    • v.8 no.2
    • /
    • pp.83-95
    • /
    • 2023
  • Big data analytics and AI play a critical role in the development of smart plants. This study presents a big data platform for plant data and an 'AutoML platform' for AI-based plant O&M(Operation and Maintenance). The big data platform collects, processes and stores large volumes of data generated in plants using Hadoop, Spark, and Kafka. The AutoML platform is a machine learning automation system aimed at constructing predictive models for equipment prognostics and process optimization in plants. The developed platforms configures a data pipeline considering compatibility with existing plant OISs(Operation Information Systems) and employs a web-based GUI to enhance both accessibility and convenience for users. Also, it has functions to load user-customizable modules into data processing and learning algorithms, which increases process flexibility. This paper demonstrates the operation of the platforms for a specific process of an oil company in Korea and presents an example of an effective data utilization platform for smart plants.

Operational Big Data Analytics platform for Smart Factory (스마트팩토리를 위한 운영빅데이터 분석 플랫폼)

  • Bae, Hyerim;Park, Sanghyuck;Choi, Yulim;Joo, Byeongjun;Sutrisnowati, Riska Asriana;Pulshashi, Iq Reviessay;Putra, Ahmad Dzulfikar Adi;Adi, Taufik Nur;Lee, Sanghwa;Won, Seokrae
    • The Journal of Bigdata
    • /
    • v.1 no.2
    • /
    • pp.9-19
    • /
    • 2016
  • Since ICT convergence became a major issue, German government has carried forward a policy 'Industry 4.0' that triggered ICT convergence with manufacturing. Now this trend gets into our stride. From this facts, we can expect great leap up to quality perfection in low cost. Recently Korean government also enforces policy with 'Manufacturing 3.0' for upgrading Korean manufacturing industry with being accelerated by many related technologies. We, in the paper, developed a custom-made operational big data analysis platform for the implementation of operational intelligence to improve industry capability. Our platform is designed based on spring framework and web. In addition, HDFS and spark architectures helps our system analyze massive data on the field with streamed data processed by process mining algorithm. Extracted knowledge from data will support enhancement of manufacturing performance.

  • PDF

Energy Big Data Pre-processing System for Energy New Industries (에너지신산업을 위한 에너지 빅데이터 전처리 시스템)

  • Yang, Soo-Young;Kim, Yo-Han;Kim, Sang-Hyun;Kim, Won-Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.851-858
    • /
    • 2021
  • Due to the increase in renewable energy and distributed resources, not only traditional data but also various energy-related data are being generated in the new energy industry. In other words, there are various renewable energy facilities and power generation data, system operation data, metering and rate-related data, as well as weather and energy efficiency data necessary for new services and analysis. Energy big data processing technology can systematically analyze and diagnose data generated in the first half of the power production and consumption infrastructure, including distributed resources, systems, and AMI. Through this, it will be a technology that supports the creation of new businesses in convergence between the ICT industry and the energy industry. To this end, research on the data analysis system, such as itemized characteristic analysis of the collected data, correlation sampling, categorization of each feature, and element definition, is needed. In addition, research on data purification technology for data loss and abnormal state processing should be conducted. In addition, it is necessary to develop and structure NIFI, Spark, and HDFS systems so that energy data can be stored and managed in real time. In this study, the overall energy data processing technology and system for various power transactions as described above were proposed.

Design of Splunk Platform based Big Data Analysis System for Objectionable Information Detection (Splunk 플랫폼을 활용한 유해 정보 탐지를 위한 빅데이터 분석 시스템 설계)

  • Lee, Hyeop-Geon;Kim, Young-Woon;Kim, Ki-Young;Choi, Jong-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.1
    • /
    • pp.76-81
    • /
    • 2018
  • The Internet of Things (IoT), which is emerging as a future economic growth engine, has been actively introduced in areas close to our daily lives. However, there are still IoT security threats that need to be resolved. In particular, with the spread of smart homes and smart cities, an explosive amount of closed-circuit televisions (CCTVs) have been installed. The Internet protocol (IP) information and even port numbers assigned to CCTVs are open to the public via search engines of web portals or on social media platforms, such as Facebook and Twitter; even with simple tools these pieces of information can be easily hacked. For this reason, a big-data analytics system is needed, capable of supporting quick responses against data, that can potentially contain risk factors to security or illegal websites that may cause social problems, by assisting in analyzing data collected by search engines and social media platforms, frequently utilized by Internet users, as well as data on illegal websites.