The storage and retrieval of multimedia data is becoming increasingly important in many application areas including record management, video(CCTV) management and Internet of Things (IoT). In these applications, the files containing multimedia that need to be stored and managed is tremendous and constantly scaling. In this paper, we propose a technique to retrieve a very large number of files, in multimedia format, using the Hadoop Framework. Our strategy is based on the management of metadata that describes the characteristic of files that are stored in Hadoop Distributed File System (HDFS). The metadata schema is represented in Hbase and looked up using SQL On Hadoop (Hive, Tajo). Both the Hbase, Hive and Tajo are part of the Hadoop Ecosystem. Preliminary experiment on multimedia data files stored in HDFS shows the viability of the proposed strategy.
스마트폰이 보급되어 빅 데이터(Big Data) 시대를 맞이하였고, 페이스북(FaceBook)이나 트위터(Twitter)같은 SNS(Social Network Service)를 실생활에서 일상화되어 사용하고 있다. 여기서 발생하는 SNS의 비정형 데이터를 버리지 않고 분석 및 추출하고 활용하기 위해서 아파치 재단에서 개발된 하둡(Hadoop)을 활용하고 있다. 하둡은 대량의 자료를 처리할 수 있는 오픈 소스 프레임워크(Open Source Framework)이다. 하둡은 국내의 기업에서도 도입하고 있으며 현재 개발 및 상용하고 있다. 그러나 하둡은 기술 개발에 비해 보안 분야는 미흡하다는 지적을 받고 있다. 이에 본 논문에서는 하둡의 보안 기술과 취약점을 분석하고 보안을 향상시키는 방법을 제안한다.
디지털 빅데이터 시대가 도래함에 따라 다양한 분야에서 하둡 플랫폼이 널리 사용되고 있지만, 하둡 맵리듀스 프레임워크는 대량의 작은 파일들을 처리하는데 있어서 네임노드의 메인 메모리와 맵 태스크 수가 증가하는 문제점을 안고 있다. 또한, 맵리듀스 프레임워크에서 하드웨어 기반 데이터 병렬성을 지원하는 GPU를 활용하기 위해서는 C++ 언어 기반의 태스크를 맵리듀스 프레임워크에서 수행하기 위한 방식이 필요하다. 따라서, 본 논문에서는 이미지 빅데이터를 처리하기 위해 하둡 플랫폼 환경에서 이미지 시퀀스 파일을 생성하고 하둡 파이프를 이용하여 GPU 기반의 얼굴 검출 태스크를 맵리듀스 프레임워크에서 처리하는 얼굴 검출 시스템을 제시하고 단일 CPU 프로세스 대비 약 6.8배의 성능 향상을 보여준다.
본 논문에서는 대규모의 작업을 고성능으로 처리하기 위한 Many-Task Computing(MTC) 기술을 기존의 빅데이터 처리 플랫폼인 Hadoop에 적용하기 위한 MOHA(Many-Task Computing on Hadoop) 프레임워크에 대해 기술한다. 세부적으로는 MOHA의 기본 개념과 개발 동기, 분산 작업 큐에 기반한 PoC(Proof-of-Concept) 수행 결과를 제시하고 향후 연구 방향에 대해서 논의하고자 한다. MTC 응용은 각각의 태스크들이 요구하는 I/O 처리량은 상대적으로 많지 않지만, 동시에 대량의 태스크들을 고성능으로 처리해야하고 이들이 파일을 통해서 통신한다는 특징을 가지고 있다. 따라서 기존의 상대적으로 큰 데이터 블록 사이즈에 기반한 Hadoop 응용과는 또 다른 패턴의 데이터 집약형 워크로드라고 할 수 있다. 이러한 MTC 기술과 빅데이터 기술의 융합을 통해 멀티 응용 플랫폼으로 진화하고 있는 Hadoop 생태계에 신규 프레임워크로서 대규모 계산과학 응용을 실행할 수 있는 MOHA를 추가하여 기여할 수 있을 것이다.
MapReduce is a framework that can process huge datasets in parallel and distributed computing environments. However, a single machine failure during the runtime of MapReduce tasks can increase completion time by 50%. MapReduce handles task failures by restarting the failed task and re-computing all input data from scratch, regardless of how much data had already been processed. To solve this issue, we need the computed key-value pairs to persist in a storage system to avoid re-computing them during the restarting process. In this paper, the task failure resilience (TFR) technique is proposed, which allows the execution of a failed task to continue from the point it was interrupted without having to redo all the work. Amazon ElastiCache for Redis is used as a non-volatile cache for the key-value pairs. We measured the performance of TFR by running different Hadoop benchmarking suites. TFR was implemented using the Hadoop software framework, and the experimental results showed significant performance improvements when compared with the performance of the default Hadoop implementation.
하둡은 오픈소스 기반의 분산 데이터 처리 프레임워크로서 과학 및 상용 분야에서 널리 사용되고 있는데 최근에 대규모 데이터의 실시간 처리 및 분석을 위해 고성능 컴퓨팅(HPC) 기술을 활용하여 하둡을 고성능화하기 위한 연구가 시도되고 있다. 본 논문에서는 하둡의 기본 파일시스템 구현인 하둡 분산파일시스템(HDFS)을 고성능 병렬 분산파일시스템인 러스터 파일시스템으로 대체하여 사용할 수 있도록 하둡 파일시스템 라이브러리를 확장하여 구현하였고 하둡이 제공하는 표준 벤치마크 도구를 사용하여 성능을 분석하였다. 실험 결과 러스터 파일시스템 기반으로 하둡 맵리듀스 응용을 수행하는 경우에 2-13배의 성능 향상이 있음을 확인할 수 있었다.
최근 대용량 영상데이터로부터 정보 수집, 영상 처리를 위한 클라우드 관련 연구들이 활발하다. 그러나 공개 소프트웨어를 이용한 클라우드 연구의 대부분은 라이브러리 수준이 아닌 단순히 프로그램 수준의 조합으로 작동한다. 이런 이유로 단순 조합에 따른 비효율성에 의한 성능문제는 크게 다루어지지 않는다. 본 논문에서는 이 비효율성을 해결하는데 중점을 두고 FFmpeg과 Hadoop을 라이브러리 수준으로 결합하여 기존보다 더 나은 성능의 영상클라우드 환경을 구축하였다. C기반의 영상처리 라이브러리인 FFmpeg와 JAVA기반의 클라우드 환경 Hadoop의 결합을 위해 JNI(Java Native Interface)를 이용하였다. 상세구현으로는 HDFS(Hadoop Distributed File System)을 확장하여 Hadoop MapReduce가 직접 FFmpeg을 통한 영상파일 접근이 가능하게 하였다. 이로써 FFmpeg과 Hadoop간 상이한 파일 접근 방식에서 발생하는 불필요한 작업에 의한 시스템의 성능저하를 막았다. 또한 응용의 확장성을 위해 영상작업시 작업영상을 영상처리의 최소단위인 GOP(Group of Pictures)단위로 잘라 클라우드의 노드들에게 분산시켰다. 결과적으로 기존에 존재하는 Hadoop과 FFmpeg을 프로그램적으로 결합한 영상처리 클라우드보다 총 처리시간을 앞당겼고, GOP 단위의 영상 처리는 영상기반 작업에 안정성과 응용의 확장성을 보장해주었다.
하둡 맵리듀스(MapReduce)는 사용자가 요청한 잡을 하둡 클러스터에서 효과적으로 병렬 분산 처리하기 위한 프레임워크이다. 맵리듀스의 태스크 스케쥴러는 사용자의 잡 태스크들을 여러 노드에 할당하기 위한 기법이다. 하지만, 기존의 스케쥴러는 노드의 가용 상태에 따라 규모가 동적으로 변화하는 하둡 클러스터를 고려하지 않음으로써 클러스터의 자원을 충분히 활용하지 못하는 문제가 있다. 본 논문에서는 노드의 가용성을 고려하여 잡 태스크를 효과적으로 할당함으로써 하둡 클러스터의 활용성을 높이는 태스크 할당 정책을 제시한다.
본 논문에서는 하둡 플랫폼에서 비용 효율적 빅데이터 분석을 수행하기 위한 클러스터 규모의 설정 방안을 연구한다. 의료기관의 경우 진료기록의 병원 외부 저장이 가능해짐에 따라 클라우드 기반 빅데이터 분석 요구가 증가하고 있다. 본 논문에서는 대중적으로 많이 사용되고 있는 클라우드 서비스인 아마존 EMR 프레임워크를 분석하고, 비용 효율적으로 하둡을 운용하기 위해 클러스터의 규모를 산정하기 위한 모델을 제시한다. 그리고, 다양한 조건에서의 실험을 통해 맵리듀스의 실행에 영향을 미치는 요인을 분석한다. 이를 통해 비용 대비 처리시간이 가장 효율적인 클러스터를 설정함으로써 빅데이터 분석시 효율성을 증대시킬 수 있다.
Multitenancy has gained growing importance with the development and evolution of cloud computing technology. In a multitenant environment, multiple tenants with different demands can share a variety of computing resources (e.g., CPU, memory, storage, network, and data) within a single system, while each tenant remains logically isolated. This useful multitenancy concept offers highly efficient, and cost-effective systems without wasting computing resources to enterprises requiring similar environments for data processing and management. In this paper, we propose a novel approach supporting multitenancy features for Apache Hadoop, a large scale distributed system commonly used for processing big data. We first analyze the Hadoop framework focusing on "yet another resource negotiator (YARN)", which is responsible for managing resources, application runtime, and access control in the latest version of Hadoop. We then define the problems for supporting multitenancy and formally derive the requirements to solve these problems. Based on these requirements, we design the details of multitenant Hadoop. We also present experimental results to validate the data access control and to evaluate the performance enhancement of multitenant Hadoop.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.